化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3605-3614.DOI: 10.11949/0438-1157.20241437

• 能源和环境工程 • 上一篇    下一篇

基于三周期极小曲面结构的高密度储热器蓄放热特性研究

夏天炜1(), 王谙词1, 句子涵1, 孙晓霞2, 胡定华1()   

  1. 1.南京理工大学电子设备热控制工信部重点实验室,江苏 南京 210094
    2.中国北方车辆研究所 先进越野系统技术全国重点实验室,北京 100072
  • 收稿日期:2024-12-12 修回日期:2025-03-19 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 胡定华
  • 作者简介:夏天炜(1998—),男,硕士研究生,xiatianwei1998@163.com

Study on thermal storage and release characteristics of TPMS-based high density thermal storage device

Tianwei XIA1(), Anci WANG1, Zihan JU1, Xiaoxia SUN2, Dinghua HU1()   

  1. 1.MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2.National Key Laboratory of Advanced Off-Road System Technology, China North Vehicle Research Institute, Beijing 100072, China
  • Received:2024-12-12 Revised:2025-03-19 Online:2025-07-25 Published:2025-08-13
  • Contact: Dinghua HU

摘要:

基于三周期极小曲面(TPMS)结构的流道设计具有复杂的几何构型和较大的换热面积,能显著强化流场扰动以提升换热性能。针对高储热功率等极端应用需求提出了基于TPMS结构的三通道高效相变储热换热器设计方案,并采用数值模拟方法,以传热系数、Nusselt数、单位长度压降、摩擦系数、归一化换热评估参数j因子以及归一化综合性能评估参数η因子等为评估标准,对比分析不同构型的换热、流阻以及储热特性。结果表明:换热与流阻性能均随着孔隙度的增大而提升,同一孔隙度下Diamond型结构的传热系数更高,而Schwarz型结构的Nusselt数更高;储热密度随孔隙度的增大而下降,但储热功率密度随孔隙度的增大而提升,Schwarz型85%孔隙度结构的储热功率密度高达185.6 MW·m-3。研究结果可为设计新型高效潜热储热系统提供参考。

关键词: 计算流体力学, 对流, 传热, 三周期极小曲面, 相变储热

Abstract:

The flow channel design based on the triply periodic minimal surface (TPMS) structure has complex geometric configurations and a large heat transfer area, which can significantly enhance flow field disturbances and improve heat transfer performance. Aiming at extreme application requirements such as high heat storage power, a three-channel high-efficiency phase change heat storage heat exchanger design based on TPMS structure is proposed. Numerical simulation methods were used to compare and analyze the heat transfer, flow resistance, and heat storage characteristics of different configurations based on evaluation criteria such as heat transfer coefficient, Nusselt number, unit length pressure drop, friction coefficient, normalized heat transfer evaluation parameter j factor, and normalized comprehensive performance evaluation parameter η factor. The results showed that both heat transfer and flow resistance performance improved with the increase of porosity. Under the same porosity, the heat transfer coefficient of Diamond type structure was higher, while the Nusselt number of Schwarz type structure was higher; the thermal storage density decreases with the increase of porosity, but the thermal storage power density increased with the increase of porosity. The thermal storage power density of Schwarz type 85% porosity structure was as high as 185.6 MW·m-3. This study has important guiding significance for designing new and efficient latent heat storage systems.

Key words: computational fluid dynamics, convection, heat transfer, TPMS, phase change thermal storage

中图分类号: