化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3295-3304.DOI: 10.11949/0438-1157.20241529
陆学瑞1(
), 周帼彦1(
), 方琦1, 俞孟正1, 张秀成2, 涂善东1
收稿日期:2024-12-30
修回日期:2025-03-20
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
周帼彦
作者简介:陆学瑞(1998—),男,硕士研究生,2643542786@qq.com
基金资助:
Xuerui LU1(
), Guoyan ZHOU1(
), Qi FANG1, Mengzheng YU1, Xiucheng ZHANG2, Shandong TU1
Received:2024-12-30
Revised:2025-03-20
Online:2025-07-25
Published:2025-08-13
Contact:
Guoyan ZHOU
摘要:
固体氧化物燃料电池外重整器工作过程中,催化剂表面会产生积炭,导致其内部孔道结构破坏并降低催化剂活性,最终会完全堵塞催化剂孔道,造成重整器失效。采用有限元模拟软件,建立三维瞬态多物理场耦合积炭模型,模拟流体流动、质量传递、传热和化学反应过程,分析甲烷浓度、原料气流速、催化床层孔隙率以及原料气中氢气含量对重整器内积炭行为的影响。研究结果表明,催化床层孔隙率改变对催化床积炭影响较小,最佳孔隙率为0.30~0.50;原料气流速增加会改变催化床的积炭位置,最佳气体流速为0.06 m/s;增大甲烷浓度和原料气中氢气含量都会加重催化床的积炭。可通过合理调控甲烷原料气流速、甲烷浓度、氢气含量及催化床层孔隙率等工艺参数,快速消耗甲烷热解产生的碳原子,有效降低重整器内部积炭。
中图分类号:
陆学瑞, 周帼彦, 方琦, 俞孟正, 张秀成, 涂善东. 固体氧化物燃料电池外重整器积炭效应数值模拟研究[J]. 化工学报, 2025, 76(7): 3295-3304.
Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells[J]. CIESC Journal, 2025, 76(7): 3295-3304.
| 名称 | 尺寸规格 |
|---|---|
| 重整器入口直径D1 | 20 mm |
| 重整器出口直径D2 | 20 mm |
| 重整器壁厚δ | 2 mm |
| 重整器长度L | 140 mm |
| 催化剂域直径d | 40 mm |
| 催化剂域管长L1 | 70 mm |
| 催化剂颗粒直径Φ | 5 mm |
表1 重整器结构参数
Table 1 Structural parameters of reformer
| 名称 | 尺寸规格 |
|---|---|
| 重整器入口直径D1 | 20 mm |
| 重整器出口直径D2 | 20 mm |
| 重整器壁厚δ | 2 mm |
| 重整器长度L | 140 mm |
| 催化剂域直径d | 40 mm |
| 催化剂域管长L1 | 70 mm |
| 催化剂颗粒直径Φ | 5 mm |
| [1] | 陈宇瑶. 天然气固体氧化物燃料电池的多物理场耦合数值模拟[D]. 武汉: 武汉理工大学, 2021. |
| Chen Y Y. Multi-physical field coupling numerical simulation of natural gas solid oxide fuel cell[D]. Wuhan: Wuhan University of Technology, 2021. | |
| [2] | 刘铉东, 张颖超, 栾学斌, 等. 天然气水蒸气重整制氢技术的能耗及成本分析[J]. 石油炼制与化工, 2023, 54(7): 105-112. |
| Liu X D, Zhang Y C, Luan X B, et al. Energy consumption and cost analysis of hydrogen production by steam reforming of natural gas[J]. Petroleum Processing and Petrochemicals, 2023, 54(7): 105-112. | |
| [3] | 李博涵, 刘畅, 王朝阳, 等. 甲烷/甲醇固体氧化物燃料电池输出电特性与内部多物理场分布模拟研究[J]. 西安交通大学学报, 2025, 59(3): 9-20. |
| Li B H, Liu C, Wang C Y, et al. Study on the output electrical characteristics and internal multi-physics field distribution simulation of methane/methanol solid oxide fuel cell[J]. Journal of Xi'an Jiao Tong University, 2025, 59(3): 9-20. | |
| [4] | Wang X K, Yan W R, Pan J, et al. Effects of the mixing ratios of n-decane/methylcyclohexane binary fuel on the thermal cracking and carbon deposition propensity[J]. International Journal of Heat and Mass Transfer, 2025, 238: 126481. |
| [5] | 曹希文, 罗凌虹, 曾小军, 等. 固体氧化物燃料电池Ni基阳极抗积炭的研究进展[J]. 陶瓷学报, 2024, 45(1): 72-88. |
| Cao X W, Luo L H, Zeng X J, et al. Research progress in coking resistance of Ni-based anodes for solid oxide fuel cells[J]. Journal of Ceramics, 2024, 45(1): 72-88. | |
| [6] | Bao T T, Zhou H, Zhang Y, et al. Effect of CeO2 on carbon deposition resistance of Ni/CeO2 catalyst supported on SiC porous ceramic for ethanol steam reforming[J]. Journal of Rare Earths, 2023, 41(11): 1703-1713. |
| [7] | Han C L, Zhu X X, Chen B B, et al. A strategy of constructing the Ni@silicalite-1 catalyst structure with high activity and resistance to sintering and carbon deposition for dry reforming of methane[J]. Fuel, 2024, 355: 129548. |
| [8] | 沈文豪, 张亚新, 赵玲. 甲烷化反应器催化剂积炭过程的模拟研究[J]. 高校化学工程学报, 2020, 34(3): 718-727. |
| Shen W H, Zhang Y X, Zhao L. Simulation of carbon deposition processes on catalysts in a methanation reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(3): 718-727. | |
| [9] | Argyle M, Bartholomew C. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
| [10] | Gavrielatos I, Drakopoulos V, Neophytides S G. Carbon tolerant Ni-Au SOFC electrodes operating under internal steam reforming conditions[J]. Journal of Catalysis, 2008, 259(1): 75-84. |
| [11] | Takeguchi T, Kani Y, Yano T, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. Journal of Power Sources, 2002, 112(2): 588-595. |
| [12] | Wang F, Wang W, Ran R, et al. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas[J]. Journal of Power Sources, 2014, 268: 787-793. |
| [13] | Lv X Q, Chen H L, Zhou W, et al. Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni-YSZ anodes[J]. Renewable Energy, 2020, 150: 334-341. |
| [14] | Rismanchian A, Mirzababaei J, Chuang S S C. Electroless plated Cu-Ni anode catalyst for natural gas solid oxide fuel cells[J]. Catalysis Today, 2015, 245: 79-85. |
| [15] | 谢静, 徐明益, 班帅, 等. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226. |
| Xie J, Xu M Y, Ban S, et al. Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming[J]. CIESC Journal, 2019, 70(1): 214-226. | |
| [16] | 肖瑶, 刘志军, 魏炜, 等. 甲烷固体氧化物燃料电池的多物理场耦合积炭模型[J]. 洁净煤技术, 2024, 30(5): 144-154. |
| Xiao Y, Liu Z J, Wei W, et al. Numerical simulation of carbon deposition in direct methane solid oxide fuel cells[J]. Clean Coal Technology, 2024, 30(5): 144-154. | |
| [17] | 王怡楠, 王雨晴, 张瑞宇, 等. 固体氧化物燃料电池积炭效应数值模拟[J]. 洁净煤技术, 2023, 29(3): 40-48. |
| Wang Y N, Wang Y Q, Zhang R Y, et al. Numerical simulation of carbon deposition in solid oxide fuel cells[J]. Clean Coal Technology, 2023, 29(3): 40-48. | |
| [18] | 帅浚超. 基于COMSOL固体氧化物燃料电池(SOFC)的数值模拟仿真[D]. 武汉: 华中科技大学, 2017. |
| Shuai J C. Numerical simulation of SOFC based on COMSOL[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
| [19] | San X G, Cui J, Chu Y X, et al. New design and construction of hierarchical porous Ni/SiO2 catalyst with anti-sintering and carbon deposition ability for dry reforming of methane[J]. ChemistrySelect, 2022, 7(36): e202202258. |
| [20] | Chen S B, Xiang W G, Chen S Y. Influence mechanism of inert carrier on the anti-carbon deposition effect of nickel-based oxygen carrier in chemical looping methane reforming process[J]. Applied Surface Science, 2022, 602: 154373. |
| [21] | Gateau P. Design of reactors and heat exchange systems to optimize a fuel cell reformer[C]// Proceedings of the COMSOL User's Conference Grenoble. 2007. |
| [22] | 黄兴, 赵博宇, Bachirou Guene Lougou, 等. 甲烷水蒸气重整制氢研究进展[J]. 石油与天然气化工, 2022, 51(1): 53-61. |
| Huang X, Zhao B Y, Lougou B G, et al. Research progress of methane steam reforming for hydrogen production[J]. Chemical Engineering of Oil & Gas, 2022, 51(1): 53-61. | |
| [23] | 苏鹏, 林彬, 赵炜, 等. 基于甲烷水蒸气重整的SOFC耦合系统性能研究[J]. 电源技术, 2021, 45(4): 466-469. |
| Su P, Lin B, Zhao W, et al. Study on performance of SOFC coupled system based on methanesteam reforming[J]. Chinese Journal of Power Sources, 2021, 45(4): 466-469. | |
| [24] | 刘志军, 邱家欣, 张拓, 等. 多孔电解质固体氧化物燃料电池的制备及抗积炭性能研究[J]. 现代化工, 2024, 44(12): 199-203. |
| Liu Z J, Qiu J X, Zhang T, et al. Preparation of porous electrolyte solid oxides fuel cell and study on its anti-carbon deposition properties[J]. Modern Chemical Industry, 2024, 44(12): 199-203. | |
| [25] | 杨霞, 王燕超, 刘书贤, 等. SOFC镍基阳极材料抗积炭研究进展[J]. 电源技术, 2022, 46(10): 1088-1092. |
| Yang X, Wang Y C, Liu S X, et al. Progress on carbon deposition resistance of nickel-based anodes for solid oxide fuel cell[J]. Chinese Journal of Power Sources, 2022, 46(10): 1088-1092. | |
| [26] | Owgi A H K, Jalil A A, Hussain I, et al. Enhancing resistance of carbon deposition and reaction stability over nickel loaded fibrous silica-alumina (Ni/FSA) for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2022, 47(100): 42250-42265. |
| [27] | 闫云飞, 张力, 冉景煜, 等. 微型燃烧器预混腔内催化重整、积炭及流动特性模拟[J]. 工程热物理学报, 2008, 29(1): 89-92. |
| Yan Y F, Zhang L, Ran J Y, et al. Simulation on flow characteristics with catalytic reforming and coke deposition reaction in the premixed chamber of micro combustor[J]. Journal of Engineering Thermophysics, 2008, 29(1): 89-92. | |
| [28] | 李春义, 余长春, 沈师孔. CO在Ni/Al2O3催化剂上的歧化和氧化反应[J]. 催化学报, 1998, 19(5): 463-466. |
| Li C Y, Yu C C, Shen S K. Boudouard and oxidation reactions of CO over Ni/Al2O3 [J]. Chinese Journal of Catalysis, 1998, 19(5): 463-466. | |
| [29] | Zavarukhin S G, Kuvshinov G G. The kinetic model of formation of nanofibrous carbon from CH4-H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation[J]. Applied Catalysis A: General, 2004, 272(1/2): 219-227. |
| [30] | COMSOL, Inc. Carbon deposition in multiphase catalysis[DB/OL]. [2023-05-15]. . |
| [31] | Borisova E A, Adler P M. Deposition in porous media and clogging on the field scale[J]. Physical Review E Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(1 Pt 2): 016311. |
| [32] | 王帅, 杨学松, 王家兴, 等. 甲烷裂解双分散孔催化剂颗粒积炭行为模拟[J]. 中国粉体技术, 2024, 30(1): 14-22. |
| Wang S, Yang X S, Wang J X, et al. Simulation of carbon deposition behaviors of bi-disperse pore catalytic particles in methane cracking[J]. China Powder Science and Technology, 2024, 30(1): 14-22. | |
| [33] | 谷豆豆. 基于沼气燃料的固体氧化物燃料电池的抗积炭机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| Gu D D. Study on anti-carbon deposition mechanism of solid oxide fuel cell based on biogas fuel[D]. Harbin: Harbin Institute of Technology, 2020. |
| [1] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [2] | 赵世颖, 左志帅, 贺梦颖, 安华良, 赵新强, 王延吉. Co-Pt/HAP的制备及其催化1,2-丙二醇氨化反应[J]. 化工学报, 2025, 76(7): 3305-3315. |
| [3] | 王子恒, 李文怀, 周嵬. 图形电极在固体氧化物燃料电池中的应用[J]. 化工学报, 2025, 76(7): 3153-3171. |
| [4] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [5] | 李晋, 胡水清, 翁艺斌, 姜峻韬, 王庆宏, 陈春茂. 基于碱渣预处理策略强化炼厂污泥厌氧消化效能[J]. 化工学报, 2025, 76(7): 3446-3458. |
| [6] | 周臣儒, 刘陈伟, 王志远, 綦民辉, 董三宝, 王翔宇, 李明忠. 甲醇和乙二醇对甲烷水合物黏附强度的影响[J]. 化工学报, 2025, 76(7): 3596-3604. |
| [7] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [8] | 宋粉红, 王文光, 郭亮, 范晶. C元素修饰g-C3N4对TiO2的调控及复合材料光催化产氢性能研究[J]. 化工学报, 2025, 76(6): 2983-2994. |
| [9] | 麦棹铭, 武颖韬, 王维, 穆海宝, 黄佐华, 汤成龙. 正十二烷-甲烷双燃料非线性着火特性及稀释气体效应研究[J]. 化工学报, 2025, 76(6): 3115-3124. |
| [10] | 李愽龙, 蒋雨希, 任傲天, 秦雯琪, 傅杰, 吕秀阳. TS-1/In-TS-1催化果糖一步法醇解制备乳酸甲酯连续化试验[J]. 化工学报, 2025, 76(6): 2678-2686. |
| [11] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| [12] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| [13] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [14] | 梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462. |
| [15] | 张玮杰, 何甲文, 张一鸣, 李德立, 胡光亚, 蔡骁, 王金华, 黄佐华. 燃料分层对多级旋流甲烷燃烧流场和火焰结构影响研究[J]. 化工学报, 2025, 76(4): 1754-1764. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号