化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3295-3304.DOI: 10.11949/0438-1157.20241529

• 催化、动力学与反应器 • 上一篇    下一篇

固体氧化物燃料电池外重整器积炭效应数值模拟研究

陆学瑞1(), 周帼彦1(), 方琦1, 俞孟正1, 张秀成2, 涂善东1   

  1. 1.华东理工大学机械与动力工程学院,承压系统与安全教育部重点实验室,上海 200237
    2.中弗(无锡)新能源有限公司,江苏 无锡 214000
  • 收稿日期:2024-12-30 修回日期:2025-03-20 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 周帼彦
  • 作者简介:陆学瑞(1998—),男,硕士研究生,2643542786@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFB4001504)

Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells

Xuerui LU1(), Guoyan ZHOU1(), Qi FANG1, Mengzheng YU1, Xiucheng ZHANG2, Shandong TU1   

  1. 1.Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.Zhongfu (Wuxi) New Energy Co. , Ltd. , Wuxi 214000, Jiangsu, China
  • Received:2024-12-30 Revised:2025-03-20 Online:2025-07-25 Published:2025-08-13
  • Contact: Guoyan ZHOU

摘要:

固体氧化物燃料电池外重整器工作过程中,催化剂表面会产生积炭,导致其内部孔道结构破坏并降低催化剂活性,最终会完全堵塞催化剂孔道,造成重整器失效。采用有限元模拟软件,建立三维瞬态多物理场耦合积炭模型,模拟流体流动、质量传递、传热和化学反应过程,分析甲烷浓度、原料气流速、催化床层孔隙率以及原料气中氢气含量对重整器内积炭行为的影响。研究结果表明,催化床层孔隙率改变对催化床积炭影响较小,最佳孔隙率为0.30~0.50;原料气流速增加会改变催化床的积炭位置,最佳气体流速为0.06 m/s;增大甲烷浓度和原料气中氢气含量都会加重催化床的积炭。可通过合理调控甲烷原料气流速、甲烷浓度、氢气含量及催化床层孔隙率等工艺参数,快速消耗甲烷热解产生的碳原子,有效降低重整器内部积炭。

关键词: 重整器, 积炭, 孔隙率, 燃料电池, 甲烷, 催化剂

Abstract:

Carbon deposition will occur on the catalyst surface during the operation of the external reformer of solid oxide fuel cells, which will damage the internal pore structure and reduce the catalyst activity, and eventually completely block the catalyst pores, causing the reformer to fail. A three-dimensional transient multi-physical field coupled carbon deposition model was established by using finite element simulation software, and the processes of fluid flow, mass transfer, heat transfer and chemical reaction were simulated. The effects of methane concentration, feed gas flow rate, porosity of catalytic bed and hydrogen content in feed gas on carbon deposition behavior in reformer were analyzed. The results show that the change of porosity of catalytic bed has little effect on carbon deposition in catalytic bed, and the optimum porosity is 0.30—0.50. The increase of feed gas flow rate will change the carbon deposition position of catalytic bed, and the optimal gas flow rate is 0.06 m/s. Increasing methane concentration and hydrogen content in feed gas will aggravate the carbon deposition behavior of catalytic bed. The carbon atoms produced by methane pyrolysis can be rapidly consumed by reasonably adjusting the process parameters such as methane feed gas flow rate, methane concentration, hydrogen content and porosity of catalytic bed, and the carbon deposition in the reformer can be effectively reduced.

Key words: reformer, carbon deposition, porosity, fuel cells, methane, catalyst

中图分类号: