化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2678-2686.DOI: 10.11949/0438-1157.20241443
李愽龙2(
), 蒋雨希1, 任傲天1, 秦雯琪1, 傅杰1,2, 吕秀阳1(
)
收稿日期:2024-12-13
修回日期:2025-01-23
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
吕秀阳
作者简介:李愽龙(1991—),男,博士,副研究员,bolongli@zju-qz.edu.cn
基金资助:
Bolong LI2(
), Yuxi JIANG1, Aotian REN1, Wenqi QIN1, Jie FU1,2, Xiuyang LYU1(
)
Received:2024-12-13
Revised:2025-01-23
Online:2025-06-25
Published:2025-07-09
Contact:
Xiuyang LYU
摘要:
乳酸甲酯(MLA)是重要的生物质基平台化合物,其中生物质糖固定床催化连续醇解制备MLA是未来工业化的方向。前期采用间歇釜开发了TS-1和In-TS-1两种长效催化剂,本文开展了在固定床中TS-1和In-TS-1催化果糖连续醇解制备MLA的试验。结果表明,在200℃,系统压力4.8 MPa下,TS-1和In-TS-1可稳定运行144 h且未发生失活,MLA收率分别达到50.4%和60%。XRD、N2吸脱附试验、TG-DSC、Py-FTIR、ICP-OES等一系列表征结果表明反应后催化剂的晶型、孔道结构、表面酸性质保持稳定,Ti、In金属流失极少,证实了TS-1和In-TS-1催化剂在固定床连续反应过程中的稳定性。本研究为推进In-TS-1催化果糖连续醇解制备MLA技术的开发及工业化提供基础数据。
中图分类号:
李愽龙, 蒋雨希, 任傲天, 秦雯琪, 傅杰, 吕秀阳. TS-1/In-TS-1催化果糖一步法醇解制备乳酸甲酯连续化试验[J]. 化工学报, 2025, 76(6): 2678-2686.
Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1[J]. CIESC Journal, 2025, 76(6): 2678-2686.
| 催化剂 | SBET/ (m2·g-1) | SMicro/ (m2·g-1) | VTotal/ (cm3·g-1) | VMicro/ (cm3·g-1) |
|---|---|---|---|---|
| 新鲜 TS-1 | 454.5 | 400.2 | 0.34 | 0.17 |
| 使用后 TS-1 | 407.7 | 353.5 | 0.29 | 0.15 |
| 新鲜 In-TS-1 | 405.5 | 326.0 | 0.21 | 0.13 |
| 使用后 In-TS-1 | 391.5 | 316.7 | 0.21 | 0.13 |
表1 新鲜和使用后催化剂的结构性质
Table 1 Textural properties of the fresh and spent catalysts
| 催化剂 | SBET/ (m2·g-1) | SMicro/ (m2·g-1) | VTotal/ (cm3·g-1) | VMicro/ (cm3·g-1) |
|---|---|---|---|---|
| 新鲜 TS-1 | 454.5 | 400.2 | 0.34 | 0.17 |
| 使用后 TS-1 | 407.7 | 353.5 | 0.29 | 0.15 |
| 新鲜 In-TS-1 | 405.5 | 326.0 | 0.21 | 0.13 |
| 使用后 In-TS-1 | 391.5 | 316.7 | 0.21 | 0.13 |
| 催化剂 | 酸量/(μmol·g-1) | ||
|---|---|---|---|
| Brønsted酸 | Lewis酸 | 总酸 | |
| 新鲜 TS-1[ | 20.8 | 400.9 | 421.7 |
| 使用后 TS-1 | 17.6 | 398.4 | 416.0 |
| 新鲜 In-TS-1 | 33.5 | 449.7 | 483.2 |
| 使用后 In-TS-1 | 32.6 | 438.7 | 471.3 |
表2 新鲜和使用后催化剂的酸性质
Table 2 Acidic properties of the fresh and spent catalysts
| 催化剂 | 酸量/(μmol·g-1) | ||
|---|---|---|---|
| Brønsted酸 | Lewis酸 | 总酸 | |
| 新鲜 TS-1[ | 20.8 | 400.9 | 421.7 |
| 使用后 TS-1 | 17.6 | 398.4 | 416.0 |
| 新鲜 In-TS-1 | 33.5 | 449.7 | 483.2 |
| 使用后 In-TS-1 | 32.6 | 438.7 | 471.3 |
| 催化剂 | Ti 含量/%(质量) | In 含量/%(质量) |
|---|---|---|
| 新鲜 TS-1 | 2.29 | — |
| 使用后 TS-1 | 2.29 | — |
| 新鲜 In-TS-1 | 1.12 | 1.31 |
| 使用后 In-TS-1 | 1.11 | 1.29 |
表3 新鲜和使用后催化剂的Ti和In含量
Table 3 Ti and In contents of the fresh and spent catalysts
| 催化剂 | Ti 含量/%(质量) | In 含量/%(质量) |
|---|---|---|
| 新鲜 TS-1 | 2.29 | — |
| 使用后 TS-1 | 2.29 | — |
| 新鲜 In-TS-1 | 1.12 | 1.31 |
| 使用后 In-TS-1 | 1.11 | 1.29 |
| 反应形式 | 不同催化剂的MLA收率/% | |
|---|---|---|
| TS-1 | In-TS-1 | |
| 间歇 | 40.5[ | 71.9[ |
| 连续 | 49~50 | 59~60 |
表4 TS-1和In-TS-1催化间歇反应和连续反应MLA的收率
Table 4 Yield of MLA in TS-1 and In-TS-1 catalyzed batch and continuous reactions
| 反应形式 | 不同催化剂的MLA收率/% | |
|---|---|---|
| TS-1 | In-TS-1 | |
| 间歇 | 40.5[ | 71.9[ |
| 连续 | 49~50 | 59~60 |
| 催化剂 | 反应条件 | MLA最高收率/% | 运行时间/h | MLA收率降低程度/% | 文献 |
|---|---|---|---|---|---|
| Sn-Beta | 0.65%(质量)葡萄糖甲醇溶液;165℃,4 MPa,滴流床 | 45 | 120 | 8 | [ |
| Sn-Beta | 1%(质量)葡萄糖甲醇水混合溶液,160℃,固定床 | 75 | 60 | 42 | [ |
| Sn-Beta | 1.25%(质量)果糖甲醇水混合溶液,160℃,固定床 | 54 | 456 | 5 | [ |
| In-TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 60 | 144 | 未降低 | 本工作 |
| TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 50 | 144 | 未降低 | 本工作 |
表5 糖类连续醇解稳定性比较
Table 5 Stability comparison of sugar continuous alcoholysis
| 催化剂 | 反应条件 | MLA最高收率/% | 运行时间/h | MLA收率降低程度/% | 文献 |
|---|---|---|---|---|---|
| Sn-Beta | 0.65%(质量)葡萄糖甲醇溶液;165℃,4 MPa,滴流床 | 45 | 120 | 8 | [ |
| Sn-Beta | 1%(质量)葡萄糖甲醇水混合溶液,160℃,固定床 | 75 | 60 | 42 | [ |
| Sn-Beta | 1.25%(质量)果糖甲醇水混合溶液,160℃,固定床 | 54 | 456 | 5 | [ |
| In-TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 60 | 144 | 未降低 | 本工作 |
| TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 50 | 144 | 未降低 | 本工作 |
| [1] | Dusselier M, Van Wouwe P, Dewaele A, et al. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis[J]. Energy & Environmental Science, 2013, 6(5): 1415-1442. |
| [2] | Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies: a review[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(7): 1119-1129. |
| [3] | Mäki-Arvela P, Aho A, Murzin D Y. Heterogeneous catalytic synthesis of methyl lactate and lactic acid from sugars and their derivatives[J]. ChemSusChem, 2020, 13(18): 4833-4855. |
| [4] | Saulnier-Bellemare T, Patience G S. Homogeneous and heterogeneous catalysis of glucose to lactic acid and lactates: a review[J]. ACS Omega, 2024, 9(22): 23121-23137. |
| [5] | Wang J G, Liu Y F, Wang J H, et al. Cooperative catalysis of carbon supported zinc salts hybrid for efficient conversion of fructose to ethyl lactate[J]. Chemical Engineering Journal, 2023, 468: 143670. |
| [6] | Nemoto K, Hirano Y, Hirata K I, et al. Cooperative In-Sn catalyst system for efficient methyl lactate synthesis from biomass-derived sugars[J]. Applied Catalysis B: Environmental, 2016, 183: 8-17. |
| [7] | Wang J G, Liu Y F, Liu Y H, et al. New reaction pathways for high selectivity synthesis of methyl lactate via SnCl x (OH)2- x -catalyzed cellulose conversion in water-containing methanol solution[J]. Chemical Engineering Journal, 2024, 496: 154095. |
| [8] | Yamaguchi S, Yabushita M, Kim M, et al. Catalytic conversion of biomass-derived carbohydrates to methyl lactate by acid-base bifunctional γ - A l 2 O 3 [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8113-8117. |
| [9] | Yang L S, Yang X K, Tian E, et al. Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15[J]. Journal of Catalysis, 2016, 333: 207-216. |
| [10] | Lyu X L, Wang L X, Chen X J, et al. Enhancement of catalytic activity by γ-NiOOH for the production of methyl lactate from sugars in near-critical methanol solutions[J]. Industrial & Engineering Chemistry Research, 2019, 58(9): 3659-3665. |
| [11] | Zhao X L, Wen T, Zhang J J, et al. Fe-doped SnO2 catalysts with both BA and LA sites: facile preparation and biomass carbohydrates conversion to methyl lactate MLA[J]. RSC Advances, 2017, 7(35): 21678-21685. |
| [12] | Wang J G, Wang J H, Liu Y F, et al. Temperature-responsive Zn-based catalysts for efficient catalytic conversion of biomass-derived carbohydrates to ethyl lactate[J]. Green Chemistry, 2023, 25(14): 5613-5625. |
| [13] | Lu X L, Wang L X, Lu X Y. Catalytic conversion of sugars to methyl lactate over Mg-MOF-74 in near-critical methanol solutions[J]. Catalysis Communications, 2018, 110: 23-27. |
| [14] | Jimenez-Martin J M, Orozco-Saumell A, Hernando H, et al. Efficient conversion of glucose to methyl lactate with Sn-USY: retro-aldol activity promotion by controlled ion exchange[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8885-8896. |
| [15] | Ma H, Wen Y, Yu C H, et al. Catalytic production of methyl lactate from fructose-based carbohydrates using yttrium modified ZSM-5 zeolite[J]. ChemistrySelect, 2021, 6(39): 10674-10681. |
| [16] | van der Graaff W N P, Tempelman C H L, Pidko E A, et al. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions[J]. Catalysis Science & Technology, 2017, 7(14): 3151-3162. |
| [17] | Zhang W Y, Qin J Y, Liao S Q, et al. Titanium silicate-1 coupled with Sn and Er as effective catalysts for the production of lactic acid from saccharides[J]. ChemCatChem, 2025, 17(1): e202401303. |
| [18] | Li X C, Yuan X H, Xia G P, et al. Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate[J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027-8034. |
| [19] | Iglesias J, Moreno J, Morales G, et al. Sn-Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange[J]. Green Chemistry, 2019, 21(21): 5876-5885. |
| [20] | Jiménez-Martin J M, El Tawil-Lucas M, Montaña M, et al. Production of methyl lactate with Sn-USY and Sn-β: insights into real hemicellulose valorization[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(7): 2771-2782. |
| [21] | Qu H J, Chen X, Liu Z Y, et al. Bifunctional solid Lewis acid-base catalysts for efficient conversion of the glucose-xylose mixture to methyl lactate[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2387-2396. |
| [22] | Sun Y Y, Shi L, Wang H, et al. Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: catalytic performance and mechanistic insights[J]. Sustainable Energy & Fuels, 2019, 3(5): 1163-1171. |
| [23] | Aho A, Kumar N, Eränen K, et al. Improving the methyl lactate yield from glucose over Sn-Al-Beta zeolite by catalyst promoters[J]. Microporous and Mesoporous Materials, 2023, 351: 112483. |
| [24] | Yang X M, Wang Y, Su Y L, et al. Influence of Sn content in Sn-β on selective production of methyl lactate from glucose[J]. Catalysis Letters, 2023, 153(6): 1773-1785. |
| [25] | Yang X M, Hu J, Lu T L, et al. The important role of weak Brønsted acid site of Sn-β in conversion of sucrose to methyl lactate[J]. Molecular Catalysis, 2023, 536: 112908. |
| [26] | Zhang J, Wang L, Wang G X, et al. Hierarchical Sn-beta zeolite catalyst for the conversion of sugars to alkyl lactates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3123-3131. |
| [27] | Zhang Y F, Luo H, Zhao X P, et al. Continuous conversion of glucose into methyl lactate over the Sn-beta zeolite: catalytic performance and activity insight[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17365-17372. |
| [28] | Padovan D, Tolborg S, Botti L, et al. Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximising the performance of Sn-Beta with a little drop of water[J]. Reaction Chemistry & Engineering, 2018, 3(2): 155-163. |
| [29] | Svitlana V P, Natalia L H, Artur M M, et al. Continuous conversion of fructose into methyl lactate over SnO2-ZnO/Al2O3 catalyst [J]. Journal of Chemistry and Technologies, 2021, 29(1): 1-9. |
| [30] | Jiang Y X, Lyu X L, Chen C, et al. An encapsulation strategy to design an In-TS-1 zeolite enabling high activity and stability toward the efficient production of methyl lactate from fructose[J]. Green Chemistry, 2024, 26(9): 5433-5440. |
| [31] | Jiang Y X, Lyu X L, Wei X W, et al. Reaction induced thermally stabilized TS-1 zeolite as a novel long-lasting catalyst for methyl lactate production[J]. Chemical Communications, 2023, 59(61): 9376-9379. |
| [32] | Botti L, Navar R, Tolborg S, et al. High-productivity continuous conversion of glucose to α-hydroxy esters over postsynthetic and hydrothermal Sn-beta catalysts[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(14): 4391-4403. |
| [1] | 孙文浩, 田君, 张锟, 刘娜, 曹宝森, 梁晓嫱. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| [2] | 李子阳, 申沛鑫, 张孝阿, 王成忠, 史翎, 张军营. α, ω-端羟基苯基/亚苯基高乙烯基聚硅氧烷的合成及热稳定性[J]. 化工学报, 2025, 76(6): 3041-3052. |
| [3] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [4] | 宋粉红, 王文光, 郭亮, 范晶. C元素修饰g-C3N4对TiO2的调控及复合材料光催化产氢性能研究[J]. 化工学报, 2025, 76(6): 2983-2994. |
| [5] | 杨浩杰, 刘春雨, 李雪娇, 于亮, 吕兴才. 低旋流配置下氨-甲烷-空气预混旋流火焰稳定性和排放特性[J]. 化工学报, 2025, 76(6): 3029-3040. |
| [6] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| [7] | 高冰冰, 许诺, 白云翔, 张春芳, 杨永强, 董亮亮. 氦气分离聚合物膜[J]. 化工学报, 2025, 76(5): 2119-2135. |
| [8] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [9] | 张玮杰, 何甲文, 张一鸣, 李德立, 胡光亚, 蔡骁, 王金华, 黄佐华. 燃料分层对多级旋流甲烷燃烧流场和火焰结构影响研究[J]. 化工学报, 2025, 76(4): 1754-1764. |
| [10] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [11] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
| [12] | 万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075. |
| [13] | 王三龙, 王跃霖, 曹宇. 基于相异质结的高效无机钙钛矿太阳能电池的性能研究[J]. 化工学报, 2025, 76(3): 1346-1352. |
| [14] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [15] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号