化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3885-3893.DOI: 10.11949/0438-1157.20250161
刘建海1(
), 王磊1, 鲁朝金1,2(
), 白志山1, 张平雨3
收稿日期:2025-02-21
修回日期:2025-03-19
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
鲁朝金
作者简介:刘建海(1985—),男,博士研究生,liujianhai@xinteenergy.com
基金资助:
Jianhai LIU1(
), Lei WANG1, Zhaojin LU1,2(
), Zhishan BAI1, Pingyu ZHANG3
Received:2025-02-21
Revised:2025-03-19
Online:2025-08-25
Published:2025-09-17
Contact:
Zhaojin LU
摘要:
为了改善碱性电解槽内气液两相分布均匀性,并提高制氢效率,考虑电化学与气液两相流的耦合作用,建立了电解槽的三维数值模型。研究表明,气液两相相互作用使电解槽内实际流动状态与理想单相流动状态存在明显差异,两种模型模拟流道内的电解液平均流速相差超过20%。此外,还探究了椭圆柱形乳突的结构参数对于电解槽性能的影响,随着乳突长轴尺寸逐渐增加,乳突下游形成的低速旋流区域面积先升高后降低。相比圆形乳突,椭圆形乳突可使电极表面的气相分布均匀性提高12.28%,氢气产量提高142.77%。
中图分类号:
刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893.
Jianhai LIU, Lei WANG, Zhaojin LU, Zhishan BAI, Pingyu ZHANG. Research on performance of electrolyzer coupled with electrochemical and multiphase flow model[J]. CIESC Journal, 2025, 76(8): 3885-3893.
| [1] | 张庆生, 黄雪松. 国内外氢能产业政策与技术经济性分析[J]. 低碳化学与化工, 2023, 48(2): 133-139. |
| Zhang Q S, Huang X S. Analysis of domestic and foreign hydrogen energy industrial policies and technical economy[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 133-139. | |
| [2] | Shiva Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813. |
| [3] | Lee J W, Kim B, Seo J Y, et al. Water electrolysis and desalination using an AEM/CEM hybrid electrochemical system[J]. Applied Surface Science, 2023, 610: 155524. |
| [4] | 李喆, 王可可, 王顺森, 等. 电解水制氢储能与Allam循环发电集成系统的热力学特性分析[J]. 西安交通大学学报, 2023, 57(9): 1-9. |
| Li Z, Wang K K, Wang S S, et al. Thermodynamic analysis of an integrated system based on electrolytic water hydrogen production energy storage and Allam cycle power generation[J]. Journal of Xi'an Jiaotong University, 2023, 57(9): 1-9. | |
| [5] | 张唯怡, 张议洁, 王进伟, 等. 电解水制氢技术及大电流析氧反应研究与展望[J]. 工程科学学报, 2023, 45(7): 1057-1070. |
| Zhang W Y, Zhang Y J, Wang J W, et al. Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction[J]. Chinese Journal of Engineering, 2023, 45(7): 1057-1070. | |
| [6] | Yuan S, Zhao C F, Cai X Y, et al. Bubble evolution and transport in PEM water electrolysis: mechanism, impact, and management[J]. Progress in Energy and Combustion Science, 2023, 96: 101075. |
| [7] | Qian J F, Wang C Y, Zhang X J, et al. Dense 1,2,4,5-tetramethylimidazolium-functionlized anion exchange membranes based on poly(aryl ether sulfone)s with high alkaline stability for water electrolysis[J]. International Journal of Hydrogen Energy, 2023, 48(22): 8165-8178. |
| [8] | 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350. |
| Chen M P, Ren J X, Li F Q. Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 344-350. | |
| [9] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
| Zhang S A, Liu G L. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance[J]. CIESC Journal, 2023,74(3): 1260-1274. | |
| [10] | 沈妙哲,王文婷,李瑨,等. 黑龙江省风光资源禀赋及互补性研究[J]. 节能技术, 2022, 40(6): 509-514. |
| Shen M Z, Wang W T, Li J, et al. Analysis of wind and solar resources distribution characteristics and complementarity in Heilongjiang[J]. Energy Conservation Technology, 2022, 40(6): 509-514. | |
| [11] | Wang B, Zhao G Y, Yan Q, et al. Homogeneous pseudoamorphous metal phosphide clusters for ultra stable hydrogen generation by water electrolysis at industrial current density[J]. Chemical Engineering Journal, 2023, 462: 142138. |
| [12] | Zhang J Y, Dang J, Zhu X H, et al. Ultra-low Pt-loaded catalyst based on nickel mesh for boosting alkaline water electrolysis[J]. Applied Catalysis B: Environmental, 2023, 325: 122296. |
| [13] | Chauhan D, Ahn Y H. Alkaline electrolysis of wastewater and low-quality water[J]. Journal of Cleaner Production, 2023, 397: 136613. |
| [14] | Panigrahy B, Narayan K, Ramachandra Rao B. Green hydrogen production by water electrolysis: a renewable energy perspective[J]. Materials Today: Proceedings, 2022, 67: 1310-1314. |
| [15] | Zhou W, Chen S, Meng X X, et al. Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2 [J]. Energy, 2022, 260: 125145. |
| [16] | Wang T, Wang J Y, Wang P J, et al. Non-uniform liquid flow distribution in an alkaline water electrolyzer with concave-convex bipolar plate (CCBP): a numerical study[J]. International Journal of Hydrogen Energy, 2023, 48(33): 12200-12214. |
| [17] | 肖宠, 张储桥, 沈英静, 等. 水电解制氢设备碱液平均分配影响因素的数值模拟研究[J]. 云南化工, 2020, 47(4): 111-112. |
| Xiao C, Zhang C Q, Shen Y J, et al. The numerical simulation research on the influence factors of average distribution of alkaline solution in hydrogen production equipment by water electrolysis[J]. Yunnan Chemical Technology, 2020, 47(4): 111-112. | |
| [18] | 李军, 王娟, 张佳, 等. 极板凹凸结构形状对电解槽内部流动特性的影响[J]. 过程工程学报, 2021, 21(3): 251-258. |
| Li J, Wang J, Zhang J, et al. Effects pole plate's concave-convex shapes on flow characteristics in water electrolyzer[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 251-258. | |
| [19] | 李军. 压滤式电解槽电解单元内流动特性的模拟研究[D]. 北京: 中国石油大学(北京), 2020. |
| Li J. Simulation study on flow characteristics in electrolysis unit of filter-press electrolyzer[D]. Beijing: China University of Petroleum, 2020. | |
| [20] | 李林林, 张吉礼, 周抗寒. 电解水制氧槽方柱群微小流道单相流场数值模拟分析[J]. 航天医学与医学工程, 2009, 22(1): 22-26. |
| Li L L, Zhang J L, Zhou K H. Numerical simulation analysis of single-phase flow field in micro-flow-channels of the small square cylinders in the electrolysis oxygen generation[J]. Space Medicine & Medical Engineering, 2009, 22(1): 22-26. | |
| [21] | Li J P, Liang H H, Abdullah Rehan M, et al. Numerical simulation and analysis of a two-phase flow model considering bubble coverage for alkaline electrolytic water[J]. Applied Thermal Engineering, 2024, 245: 122890. |
| [22] | Xue L C, Song S S, Chen W, et al. Enhancing efficiency in alkaline electrolysis cells: optimizing flow channels through multiphase computational fluid dynamics modeling[J]. Energies, 2024, 17(2): 448. |
| [23] | Lafmejani S S, Olesen A C, Kær S K. VOF modelling of gas-liquid flow in PEM water electrolysis cell micro-channels[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16333-16344. |
| [24] | Wong X Y, Zhuo Y T, Shen Y S. Numerical analysis of hydrogen bubble behavior in a zero-gap alkaline water electrolyzer flow channel[J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12429-12446. |
| [25] | Lee J, Alam A, Ju H. Multidimensional and transient modeling of an alkaline water electrolysis cell[J]. International Journal of Hydrogen Energy, 2021, 46(26): 13678-13690. |
| [26] | Amores E, Rodríguez J, Carreras C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13063-13078. |
| [27] | Marangio F, Santarelli M, Calì M. Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1143-1158. |
| [28] | Sandeep K C, Kamath S, Mistry K, et al. Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12094-12103. |
| [29] | Abouatallah R M, Kirk D W, Thorpe S J, et al. Reactivation of nickel cathodes by dissolved vanadium species during hydrogen evolution in alkaline media[J]. Electrochimica Acta, 2001, 47(4): 613-621. |
| [30] | 许函聪, 王红, 郭昊鹏. 船用柴油机振荡冷却流动与传热特性数值分析[J]. 节能技术, 2023, 41(3): 252-259. |
| Xu H C, Wang H, Guo H P. Numerical analysis of oscillatory cooling flow and heat transfer characteristics in a marine diesel engine[J]. Energy Conservation Technology, 2023, 41(3): 252-259. | |
| [31] | 李婧, 刘金文, 田志强, 等. 层流无叶风机流场及气动性能影响的数值研究[J]. 节能技术, 2022, 40(4): 291-296. |
| Li J, Liu J W, Tian Z Q, et al. Numerical study of the effects of flow field and aerodynamic performance in a bladeless fan[J]. Energy Conservation Technology, 2022, 40(4): 291-296. | |
| [32] | Haug P, Kreitz B, Koj M, et al. Process modelling of an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15689-15707. |
| [1] | 刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| [2] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [3] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [4] | 林嘉豪, 付芳忠, 叶昊辉, 胡金, 姚明灿, 范鹤林, 王旭, 王瑞祥, 徐志峰. NdF3含量对NdF3-LiF熔盐局域结构和输运性质的影响[J]. 化工学报, 2025, 76(8): 3834-3841. |
| [5] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [6] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [7] | 吴阿强, 诸葛祥群, 刘通, 王明星, 罗鲲. 纳米普鲁士蓝悬浮电解液对锂氧电池性能的影响[J]. 化工学报, 2025, 76(8): 4310-4317. |
| [8] | 罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833. |
| [9] | 常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953. |
| [10] | 王子恒, 李文怀, 周嵬. 图形电极在固体氧化物燃料电池中的应用[J]. 化工学报, 2025, 76(7): 3153-3171. |
| [11] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [12] | 孙国庆, 李海波, 丁志阳, 郭文辉, 徐浩, 赵艳侠. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211. |
| [13] | 高凤凤, 程慧峰, 杨博, 郝晓刚. 电驱动NiFeMn LDH/CNTs/PVDF膜电极选择性提取钨酸根离子[J]. 化工学报, 2025, 76(7): 3350-3360. |
| [14] | 陈培强, 郑群, 姜玉廷, 熊春华, 陈今茂, 王旭东, 黄龙, 阮曼, 徐万里. 电液流量及电流密度对海水激活电池输出特性的影响[J]. 化工学报, 2025, 76(7): 3235-3245. |
| [15] | 吴鹂霄, 燕溪溪, 张素娜, 徐一鸣, 钱佳颖, 乔永民, 王利军. 磷掺杂微晶石墨的制备及其在锂离子电池负极材料中的电化学性能研究[J]. 化工学报, 2025, 76(7): 3615-3625. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号