化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5003-5014.DOI: 10.11949/0438-1157.20250134
李玲1(
), 周鑫枭1, 马超峰1, 吴建2(
), 于万金1(
), 刘武灿1, 张建君1
收稿日期:2025-02-14
修回日期:2025-03-18
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
吴建,于万金
作者简介:李玲(1986—),女,博士研究生,高级工程师,liling7@sinochem.com
基金资助:
Ling LI1(
), Xinxiao ZHOU1, Chaofeng MA1, Jian WU2(
), Wanjin YU1(
), Wucan LIU1, Jianjun ZHANG1
Received:2025-02-14
Revised:2025-03-18
Online:2025-10-25
Published:2025-11-25
Contact:
Jian WU, Wanjin YU
摘要:
一氯一氟乙烯(HCFO-1131)是一种含氟原子、氯原子及碳碳双键官能团的功能性化合物,其独特的分子结构赋予其特殊的物理化学性质。作为合成铁电性/压电性含氟聚合物P(VDF-TrFE-CFE) 的核心单体(质量占比达7%~10%),该材料在智能传感、固态制冷及新能源器件领域展现出巨大应用潜力,预计未来市场需求有望呈指数级增长。综述了HCFO-1131的合成路径及其在智能材料领域的应用拓展。HCFO-1131的主要合成路线包括含氯烯烃的氟化法、氟氯烷烃锌粉还原脱卤法以及多卤代烷烃液碱/热/催化脱HCl法。然而,上述方法普遍存在转化率低、选择性差、三废排放量高等缺陷,严重制约其规模化量产进程。针对环境友好性与材料性能的协同需求,亟需优化现有工艺或开发新型合成策略,以实现HCFO-1131的绿色高效制备,进而推动其在生物医学柔性器件、固态制冷芯片及储能复合材料等前沿领域的应用,为下一代智能装备提供关键材料支撑。
中图分类号:
李玲, 周鑫枭, 马超峰, 吴建, 于万金, 刘武灿, 张建君. 环保型氟碳化学品一氯一氟乙烯的制备与应用[J]. 化工学报, 2025, 76(10): 5003-5014.
Ling LI, Xinxiao ZHOU, Chaofeng MA, Jian WU, Wanjin YU, Wucan LIU, Jianjun ZHANG. Preparation and applications of eco-friendly fluorocarbon chemical chlorofluoroethylene[J]. CIESC Journal, 2025, 76(10): 5003-5014.
| 序号 | CH3CFCl2流量/(mol/h) | 反应温度/℃ | 接触时间/s | CH3CFCl2含量/% | 产物含量/% | CH2 收率/% | |
|---|---|---|---|---|---|---|---|
CH2 CFCl | CH2 CCl2 | ||||||
| 1 | 0.62 | 500 | 35 | 12.9 | 64.5 | 8.6 | 74 |
| 2 | 1.85 | 500 | 12 | 44.8 | 39.5 | 7.6 | 71.5 |
| 3 | 0.50 | 400 | 49 | 64.9 | 12.4 | 7.7 | 35.3 |
| 4 | 1.95 | 600 | 10 | 0 | 27.4 | 0 | 27.4 |
表1 一氟二氯乙烷在镍管中不同条件下热解的产物含量[42]
Table 1 The product content of dichlorofluoroethane pyrolysis under different conditions in a nickel tube[42]
| 序号 | CH3CFCl2流量/(mol/h) | 反应温度/℃ | 接触时间/s | CH3CFCl2含量/% | 产物含量/% | CH2 收率/% | |
|---|---|---|---|---|---|---|---|
CH2 CFCl | CH2 CCl2 | ||||||
| 1 | 0.62 | 500 | 35 | 12.9 | 64.5 | 8.6 | 74 |
| 2 | 1.85 | 500 | 12 | 44.8 | 39.5 | 7.6 | 71.5 |
| 3 | 0.50 | 400 | 49 | 64.9 | 12.4 | 7.7 | 35.3 |
| 4 | 1.95 | 600 | 10 | 0 | 27.4 | 0 | 27.4 |
| 催化剂 | 反应温度/℃ | 选择性/% | |
|---|---|---|---|
CF2 CH2 | CFCl CH2 | ||
| Al2O3 | 200 | — | 1.8 |
| 300 | 1.3 | 91.0 | |
| 400 | 7.6 | 90.6 | |
| SiO2 | 400 | 14.5 | 75.5 |
| Al2O3-SiO2 | 200 | 1.1 | 52.2 |
| 300 | 36.6 | 63.2 | |
| 400 | 78.6 | 2.1 | |
| TiO2 | 300 | 2.0 | 88.0 |
| 400 | 67.2 | 11.8 | |
| AlF3-Al2O3 | 300 | 10.4 | 79.5 |
| 400 | 12.4 | 83.4 | |
| 活性炭 | 300 | 93.5 | 3.2 |
| 无催化剂 | 500 | 5.9 | — |
表2 不同催化剂和反应温度下1-氯-1,1-二氟乙烷的脱卤化氢产物选择性[45]
Table 2 Selectivity of dehydrohalogenation products of 1-chloro-1,1-difluoroethane under different catalysts and reaction temperatures[45]
| 催化剂 | 反应温度/℃ | 选择性/% | |
|---|---|---|---|
CF2 CH2 | CFCl CH2 | ||
| Al2O3 | 200 | — | 1.8 |
| 300 | 1.3 | 91.0 | |
| 400 | 7.6 | 90.6 | |
| SiO2 | 400 | 14.5 | 75.5 |
| Al2O3-SiO2 | 200 | 1.1 | 52.2 |
| 300 | 36.6 | 63.2 | |
| 400 | 78.6 | 2.1 | |
| TiO2 | 300 | 2.0 | 88.0 |
| 400 | 67.2 | 11.8 | |
| AlF3-Al2O3 | 300 | 10.4 | 79.5 |
| 400 | 12.4 | 83.4 | |
| 活性炭 | 300 | 93.5 | 3.2 |
| 无催化剂 | 500 | 5.9 | — |
| 反应途径 | 原料 | 优点 | 缺点 |
|---|---|---|---|
| 金属还原 | 1,1-二氯-2-溴-1-氟乙烷[ 1,1,2-三氯-1-氟乙烷[ | 条件温和,原料易得 | “三废”量高,操作复杂 |
| 碱液脱卤化氢 | 1,2-二氯-1-氟乙烷[ 1,1-二氯-1-氟乙烷[ | 条件温和,转化率和选择性优异 | 产生大量碱性废液 |
| 热解 | 1-氯-1,1-二氟乙烷[ | 气相反应连续进料,“三废”量少 | 反应速率慢,选择性低,反应温度高 |
催化热解 | 1-氯-1,1-二氟乙烷[ 1,1,1-三氯乙烷[ 1,1-二氯-1-氟乙烷[ | 在热解途径的基础上提升反应速率,降低反应温度 | 催化剂易失活,选择性较低,反应温度较高 |
表3 不同脱卤化氢/脱卤制备HCFO-1131的反应途径比较
Table 3 Comparison of reaction pathways for the preparation of HCFO-1131 through different dehalogenation/dehalogenation methods
| 反应途径 | 原料 | 优点 | 缺点 |
|---|---|---|---|
| 金属还原 | 1,1-二氯-2-溴-1-氟乙烷[ 1,1,2-三氯-1-氟乙烷[ | 条件温和,原料易得 | “三废”量高,操作复杂 |
| 碱液脱卤化氢 | 1,2-二氯-1-氟乙烷[ 1,1-二氯-1-氟乙烷[ | 条件温和,转化率和选择性优异 | 产生大量碱性废液 |
| 热解 | 1-氯-1,1-二氟乙烷[ | 气相反应连续进料,“三废”量少 | 反应速率慢,选择性低,反应温度高 |
催化热解 | 1-氯-1,1-二氟乙烷[ 1,1,1-三氯乙烷[ 1,1-二氯-1-氟乙烷[ | 在热解途径的基础上提升反应速率,降低反应温度 | 催化剂易失活,选择性较低,反应温度较高 |
| [25] | Yang C, Mao W, Dong X Z, et al. Research progress in the synthesis of olefins by selective hydrodechlorination[J]. CIESC Journal, 2025, 76(1): 53-70. |
| [26] | Booth H S, Burchfield P E, Bixby E M, et al. Fluorochloroethylenes[J]. Journal of the American Chemical Society, 1933, 55(6): 2231-2235. |
| [27] | Renoll M W. Preparation of 1-chloro-1-fluoro ethylene: US2344061A[P]. 1944-03-14. |
| [28] | Jonas H, Kwasnik W. Verfahren zur Herstellung von fluorhaltigen olefinen: DE847442C[P]. 1953-05-11. |
| [29] | Boyer W M, Gilbert G. Process for making 1-chloro-2-fluoroethylene: US2924626A[P]. 1960-02-09. |
| [30] |
Stoppa P, Pietropolli Charmet A, Giorgianni S, et al. High-resolution infrared laser study of the ν4 absorption band of cis-CHCl CHF[J]. Journal of Molecular Spectroscopy, 1999, 198(1): 123-128.
|
| [31] | Onishi K, Okamoto S, Wada A, et al. Production of 1-chloro-1-fluoroethylene: JPH11100335A[P]. 1999-04-13. |
| [32] | Osaka K, Okura K, Shimizu T, et al. Production method for 1-chloro-1-fluoroethylene: JP2004115463A[P]. 2004-04-15. |
| [33] | Morikawa S, Onishi K, Okamoto S, et al. Production of 1-chloro-1-fluoroethylene: JP3408281B2[P]. 2003-05-19. |
| [34] | Feasler C F, Stover W A. Pyrolysis of difluoromonochloroethane: US2627529A[P]. 1953-02-03. |
| [35] | Martens G J, Godfroid M, Decelle R, et al. The mechanism of thermal dehydrochlorination. Pyrolysis of 1-chloro-1-fluoroethane and 1-chloro-1,1-difluoroethane[J]. International Journal of Chemical Kinetics, 1972, 4(6): 645-655. |
| [36] | Huybrechts G, Hubin Y. Pyrolysis of 1-chloro-1,1-difluoroethane in the absence and in the presence of CCl4 and mixtures of CCl4 + HCl[J]. International Journal of Chemical Kinetics, 1985, 17(2): 157-165. |
| [37] | Huybrechts G, Eerdekens K. Pyrolysis of 1,1-dichloro-1-fluoroethane in the absence and presence of added propene or CCl4: a computer-aided kinetic study[J]. International Journal of Chemical Kinetics, 2001, 33(3): 191-197. |
| [38] | Fujll C, Sinike T, Inoue Y, et al. Process for producing 1-chloro-1-fluoroethylene: US3819729A[P]. 1974-06-25. |
| [39] | Teinz K, Wuttke S, Börno F, et al. Highly selective metal fluoride catalysts for the dehydrohalogenation of 3-chloro-1,1,1,3-tetrafluorobutane[J]. Journal of Catalysis, 2011, 282(1): 175-182. |
| [40] | Mochida I, Anju Y, Yamamoto H, et al. The catalytic dehydrohalogenation of haloethanes on solid acids and bases[J]. Bulletin of the Chemical Society of Japan, 1971, 44(12): 3305-3310. |
| [41] | Bratton F H, Weimann G M. Manufacture of 1,1-chlorofluoroethylenes: US2478933A[P]. 1949-08-16. |
| [42] | Prill E J. Preparation of vinylidene chlorofluoride: US2894043A[P]. 1959-07-07. |
| [43] | Miller C B, Bratton F H. Manufacture of 1,1,1-trifluoroethane: US2478932A[P]. 1949-08-16. |
| [44] | Mantell R M, Barnhart W S. Selective dehydrohalogenation of fluorohaloalkanes using a copper catalyst: US2774799A[P]. 1956-12-18. |
| [45] | Walker F H, Pavlath A E. Dehydrohalogenation of 1,1,1-trihaloethanes[J]. The Journal of Organic Chemistry, 1965, 30(10): 3284-3285. |
| [46] | Liu W C, Liu Y N, Mardochee K M, et al. Selectivity dependence of 1,1-difluoro-1-chloroethane dehydrohalogenation on the metal-support interaction over SrF2 catalyst[J]. Catalysts, 2020, 10(3): 355. |
| [47] | 倪传法, 胡金波. 涉及碳-氟键断裂与重组的氟化重排反应: 由炔丙基氟制备官能团化偕二氟烯丙基化合物[J]. 有机化学, 2020, 40(9): 2997-2998. |
| Ni C F, Hu J B. Fluorinative rearrangement involving cleavage and recombination of carbon-fluorine bond: synthesis of functionalized allylic gem-difluorides from propargylic fluorides[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2997-2998. | |
| [1] | Strynar M. Pervasive fluorinated chemicals[J]. Nature Geoscience, 2024, 17: 280-281. |
| [2] | Liu X R, Zhao Z H, Gao Y K, et al. Triboelectric nanogenerators exhibiting ultrahigh charge density and energy density[J]. Energy & Environmental Science, 2024, 17(11): 3819-3831. |
| [3] | Chen X, Qin H C, Qian X S, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science, 2022, 375(6587): 1418-1422. |
| [4] | Scheringer M. Innovate beyond PFAS[J]. Science, 2023, 381(6655): 251. |
| [5] | Sicard A J, Baker R T. Fluorocarbon refrigerants and their syntheses: past to present[J]. Chemical Reviews, 2020, 120(17): 9164-9303. |
| [6] | Qing F L, Liu X Y, Ma J A, et al. A fruitful decade of organofluorine chemistry: new reagents and reactions[J]. CCS Chemistry, 2022, 4(8): 2518-2549. |
| [7] | Gambi A, Pietropolli Charmet A, Stoppa P, et al. Molecular synthons for accurate structural determinations: the equilibrium geometry of 1-chloro-1-fluoroethene[J]. Physical Chemistry Chemical Physics, 2019, 21(7): 3615-3625. |
| [8] | Leung H O, Marshall M D. Effect of chlorine substitution in modulating the relative importance of two intermolecular interactions: the microwave spectrum and molecular structure of (E)-1-chloro-2-fluoroethylene-HCl[J]. The Journal of Physical Chemistry. A, 2016, 120(40): 7955-7963. |
| [9] | Leung H O, Marshall M D, Khan N D. The microwave spectrum and molecular structure of (Z)-1-chloro-2-fluoroethylene-acetylene: demonstrating the importance of the balance between steric and electrostatic interactions in heterodimer formation[J]. The Journal of Physical Chemistry A, 2017, 121(30): 5651-5658. |
| [10] | Thomas M, Henne A L, Mcnary R R. Manufacture of aliphatic fluoro compounds: US1930129A[P]. 1933-10-10. |
| [11] | 李玲, 马超峰, 卢春山, 等. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
| Li L, Ma C F, Lu C S, et al. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. | |
| [48] | 李利春, 牛怀成, 韩文锋, 等. 气相氟氯交换合成氢氟烃的催化剂及反应机理[J]. 化工生产与技术, 2013, 20(4): 1-8. |
| Li L C, Niu H C, Han W F, et al. Catalyst and mechanism of gas-phase F/Cl exchange reactions for HFCs synthesis—a review[J]. Chemical Production and Technology, 2013, 20(4): 1-8. | |
| [49] | Jin F X, Zhang R H, Wang L L. Zn-doped nano-Cr2O3 catalyst for fluorination of chlorinated light olefins [J]. Molecular Catalysis, 2024, 558: 114052. |
| [50] | Elsheikh M Y. Catalytic process for the dehydrohalogenation of 1-chloro-1,1-difluoroethane: EP0407711A1[P]. 1991-01-16. |
| [51] | Han W F, Liu B, Kang Y K, et al. Experimental and DFT mechanistic study of dehydrohalogenation of 1-chloro-1,1-difluoroethane over metal fluorides[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18149-18159. |
| [52] | Zhang T Y, Zhang C P, Ma X X, et al. Comprehensive study on selective dehydrochlorination of 2-chloro-3,3,3-trifluoropropene over carbon-based catalysts and catalyst deactivation[J]. Molecular Catalysis, 2023, 547: 113314. |
| [53] | Gotou A, Hoshiva N, Higashi M, et al. Method for producing butadiene compound: 110753680A[P]. 2020-02-04. |
| [54] | 贾晓卿, 庆飞要, 张呈平, 等. 引发剂、氟化催化剂和E-1,3,3,3-四氟丙烯与-1,3,3,3-四氟丙烯的制备方法: 116037117A[P]. 2023-05-02. |
| Jia X Q, Qing F Y, Zhang C P, et al. Initiator, fluorination catalyst and preparation method of E-1,3,3,3-tetrafluoropropene and -1,3,3,3-tetrafluoropropene: 116037117A[P]. 2023-05-02. | |
| [55] | Takahira Y, Jomuta D. Method for producing olefin containing chlorine and fluorine: 107108419A[P]. 2017-08-29. |
| [56] | Venkatesan T R, Wübbenhorst M, Gerhard R. Structure-property relationships in three-phase relaxor-ferroelectric terpolymers[J]. Ferroelectrics, 2022, 586(1): 60-81. |
| [57] | Liu F H, Li Z Y, Wang Q, et al. High breakdown strength and low loss binary polymer blends of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and poly(methyl methacrylate)[J]. Polymers for Advanced Technologies, 2018, 29(4): 1271-1277. |
| [12] | 张振华, 王博, 秦越, 等. 气相催化合成氢氟烃和氢氟烯烃催化剂研究进展[J]. 工业催化, 2016, 24(5): 8-12. |
| Zhang Z H, Wang B, Qin Y, et al. Research advance in the catalysts for gas phase catalytic synthesis of hydrofluorocarbons and hydrofluoroolefins[J]. Industrial Catalysis, 2016, 24(5): 8-12. | |
| [13] | Lee T C, Tong Y, Fu W C. Advances in continuous flow fluorination reactions[J]. Chemistry-An Asian Journal, 2023, 18(21): e202300723. |
| [14] | Liang T, Neumann C N, Ritter T. Introduction of fluorine and fluorine-containing functional groups[J]. Angewandte Chemie International Edition, 2013, 52(32): 8214-8264. |
| [15] | Khandelwal M, Pemawat G, Khangarot R K. Recent developments in nucleophilic fluorination with potassium fluoride (KF): a review[J]. Asian Journal of Organic Chemistry, 2022, 11(9): e202200325. |
| [16] | 施浩进, 陆海洋, 唐新国. 浅谈气相氟化反应催化剂的研究进展[J]. 有机氟工业, 2019(4): 54-57. |
| Shi H J, Lu H Y, Tang X G. Research process of catalysts for gas phase fluorination[J]. Organo-Fluorine Industry, 2019(4): 54-57. | |
| [17] | 杨艳丽, 马耀, 李惠静, 等. 有机化合物氟化反应的研究进展[J]. 化学研究与应用, 2023, 35(1): 10-20. |
| Yang Y L, Ma Y, Li H J, et al. Research progress in fluorination reaction of organic compounds[J]. Chemical Research and Application, 2023, 35(1): 10-20. | |
| [18] | Newton L, Mast W C. Preparation of fluorinated olefins: US2377297A[P]. 1945-05-29. |
| [19] | Fiske T R, Baugh D W. Fluorination of chlorinated hydrocarbons: US4147733A[P]. 1979-04-03. |
| [20] | 张伟, 吕剑. 低温气相氟化催化剂的制备及应用研究[J]. 工业催化, 2004, 12(6): 39-43. |
| [58] | van Duong Q, Nguyen V P, Domingues Dos Santos F, et al. Localized fretting-vibrotactile sensations for large-area displays[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33292-33301. |
| [59] | Li C W, Shi L W, Yang W Y, et al. All polymer dielectric films for achieving high energy density film capacitors by blending poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) with aromatic polythiourea[J]. Nanoscale Research Letters, 2020, 15(1): 36. |
| [60] | Pereira N, Pinto R S, Gonçalves R, et al. Direct-ink writing processing of high-k poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and its integration into an all-printed capacitive touch-sensing device[J]. ACS Applied Electronic Materials, 2023, 5(11): 5977-5985. |
| [61] | Li Y S, Chen Y X, Fang H G, et al. Electron-beam writing of a relaxor ferroelectric polymer for multiplexing information storage and encryption[J]. Nanoscale, 2024, 16(1): 180-187. |
| [62] | Barbosa J C, Pinto R S, Hilliou L, et al. Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene): a new binder for conventional and printable lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 14129-14140. |
| [63] | Bauer F. Method for the production of terpolymers based on VDF, TRFE and CFE, or CTFE: 102803315A[P]. 2012-11-28. |
| [64] | Mahler B A, Nappa M J. Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene: 102015957B[P]. 2014-06-18. |
| [65] | Della Schiava N, Pedroli F, Thetpraphi K, et al. Effect of beta-based sterilization on P(VDF-TrFE-CFE) terpolymer for medical applications[J]. Scientific Reports, 2020, 10(1): 8805. |
| [66] | Pinto R S, Serra J P, Barbosa J C, et al. Tailoring poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) membrane microstructure for lithium-ion battery separator applications[J]. Journal of Colloid and Interface Science, 2025, 680: 714-724. |
| [67] | 孙文浩, 田君, 张锟, 等. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| Sun W H, Tian J, Zhang K, et al. New development of novel separators with high thermal stability for lithium-ion batteries[J]. CIESC Journal, 2025, 76(6): 2524-2543. | |
| [68] | 朱伟伟, 刘一凡, 吴于松, 等. 一种低溶胀偏氟乙烯共聚物作为锂电黏结剂的应用: 114685705A[P]. 2022-07-01. |
| [20] | Zhang W, Lv J. Advances in the preparation and application of low-temperature vapor-phase fluorination catalysts[J]. Industrial Catalysis, 2004, 12(6): 39-43. |
| [21] | 秦越, 张伟, 王博, 等. 脱卤化氢合成氢氟烯烃催化剂的研究进展[J]. 化工新型材料, 2011, 39(12): 34-37. |
| Qin Y, Zhang W, Wang B, et al. Research advance on catalysts for the synthesis of hydrofluoroolefins by dehydrohalogenation reaction[J]. New Chemical Materials, 2011, 39(12): 34-37. | |
| [22] | Roberts A L, Jeffers P M, Wolfe N L, et al. Structure-reactivity relationships in dehydrohalogenation reactions of polychlorinated and polybrominated alkanes[J]. Critical Reviews in Environmental Science and Technology, 1993, 23(1): 1-39. |
| [23] | Zhang T Y, Zhang C P, Ma X X, et al. Comprehensive study on selective dehydrochlorination of 2-chloro-3,3,3-trifluoropropene over carbon-based catalysts and catalyst deactivation[J]. Molecular Catalysis, 2023, 547: 113314. |
| [24] | Jin Y Z, Zhou Y B, Zhang P Z, et al. Ionic liquid catalysts for dehydrochlorination: stability, reaction mechanism, and catalyst optimization[J]. Chemical Engineering Journal, 2024, 500: 156628. |
| [25] | 杨晨, 毛伟, 董兴宗, 等. 选择性加氢脱氯合成烯烃研究进展[J]. 化工学报, 2025, 76(1): 53-70. |
| [68] | Zhu W W, Liu Y F, Wu Y S, et al. Application of low-swelling vinylidene fluoride copolymer as lithium battery binder: 114685705A[P]. 2022-07-01. |
| [69] | 程宗盛, 梁任龙, 黄永锋, 等. 一种超低电阻涂碳铝箔及其制备方法: 117304753A[P]. 2023-12-29. |
| Cheng Z S, Liang R L, Huang Y F, et al. Ultralow-resistance carbon-coated aluminum foil and preparation method thereof: 117304753A[P]. 2023-12-29. | |
| [70] | Neese B, Chu B J, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science, 2008, 321(5890): 821-823. |
| [71] | Shi J Y, Han D L, Li Z C, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200-1225. |
| [72] | 冯嘉旺, 蔡玉, 施骏业, 等. 面向零碳制冷与热泵的电卡复合材料及柔性制冷器件[J]. 南京大学学报(自然科学), 2022, 58(6): 925-943. |
| Feng J W, Cai Y, Shi J Y, et al. Electrocaloric nanocomposites and refrigerators for zero carbon refrigeration and heat pumps[J]. Journal of Nanjing University (Natural Science), 2022, 58(6): 925-943. | |
| [73] | Fan B H, Zhou M Y, Zhang C, et al. Polymer-based materials for achieving high energy density film capacitors[J]. Progress in Polymer Science, 2019, 97: 101143. |
| [74] | Zhang X X, Li Y Z. A review of recent research on hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants[J]. Energy, 2024, 311: 133423. |
| [1] | 佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892. |
| [2] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [3] | 张茹, 朱传强, 张栋, 黄政, 肖雨果, 李明, 李长明. 采用高分子非催化还原脱硝的垃圾焚烧工艺伴生固废含氮污染物特征研究[J]. 化工学报, 2025, 76(9): 4944-4959. |
| [4] | 钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849. |
| [5] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [6] | 徐佳琪, 张文君, 余燕萍, 苏宝根, 任其龙, 杨启炜. 热等离子体重整炼厂气制合成气过程数值模拟与实验研究[J]. 化工学报, 2025, 76(9): 4462-4473. |
| [7] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [8] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [9] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [10] | 巢欣旖, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 甲醇和乙酸甲酯一步法制丙酸甲酯催化剂的可控制备与性能调控[J]. 化工学报, 2025, 76(8): 4030-4041. |
| [11] | 杨敏, 段新伟, 吴俊宏, 米杰, 王建成, 武蒙蒙. Sm2O3/γ-Al2O3催化剂的COS催化水解性能及失活机制[J]. 化工学报, 2025, 76(8): 4061-4070. |
| [12] | 周媚, 曾浩桀, 蒋火炎, 蒲婷, 曾星星, 刘宝玉. 二次晶化法改性合成MTW分子筛及其在苯和环己烯烷基化反应中的催化性能[J]. 化工学报, 2025, 76(8): 4071-4080. |
| [13] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [14] | 罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833. |
| [15] | 彭梦圆, 李家明, 沙敏, 张丁. 季铵盐氟碳表面活性剂复配体系的性能研究[J]. 化工学报, 2025, 76(8): 4177-4184. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号