化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5093-5100.DOI: 10.11949/0438-1157.20250370
收稿日期:2025-04-09
修回日期:2025-06-03
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
付丽荣
作者简介:付丽荣(1986—),女,博士,副教授,993560@hainanu.edu.cn
基金资助:
Lirong FU(
), Baoshuo YU, Jinyi LIU, Xuan FANG
Received:2025-04-09
Revised:2025-06-03
Online:2025-10-25
Published:2025-11-25
Contact:
Lirong FU
摘要:
流道结构优化是提升质子交换膜燃料电池反应气体传输及输出性能的重要手段之一,受水滴表面微流动特性启发,提出一种新型仿生水滴流道,并借助仿真软件COMSOL Multiphysics对比分析了仿生水滴流道、波形流道及直流道三者对质子交换膜燃料电池(PEMFC)性能的影响。对极化曲线、氧气浓度分布、膜电流密度、平均流速以及压降进行分析,结果表明:在仿生水滴流道最大深度为0.65 mm、周期数为8的条件下,仿生水滴流道电流密度较波形流道、直流道分别提升了2.1%和6.1%。此外,仿生水滴流道在氧气浓度分布、膜电流密度和平均流速上均比波形流道和直流道有优势,进一步说明了仿生水滴流道具有反应气体浓度均匀、输出性能高等特点。
中图分类号:
付丽荣, 于宝硕, 刘进一, 方旋. PEMFC仿生水滴流道结构的传质和性能研究[J]. 化工学报, 2025, 76(10): 5093-5100.
Lirong FU, Baoshuo YU, Jinyi LIU, Xuan FANG. Mass transfer and performance analysis of PEMFC with bionic water flow channel[J]. CIESC Journal, 2025, 76(10): 5093-5100.
| 参数 | 数值 |
|---|---|
| 流道长度/m | 2×10-2 |
| 流道宽度/m | 1×10-3 |
| 流道高度/m | 1×10-3 |
| 扩散层厚度/m | 3×10-4 |
| 膜厚度/m | 1.08×10-4 |
| 肋宽度/m | 1×10-3 |
| 催化层厚度/m | 1.29×10-5 |
| 尾部弧长/m | 1.9×10-2 |
| 尾部端点切线角/(°) | 28 |
| 参考压力/atm | 1 |
| 工作温度/K | 343.15 |
| 扩散层孔隙率 | 0.4 |
| 扩散层电导率/(S/m) | 750 |
| 阴极入口流速/(m/s) | 0.42 |
| 阳极入口流速/(m/s) | 0.12 |
| 膜电导率/(S/m) | 9.825 |
| 阴极参考交换电流密度/(A/m2) | 1×10-4 |
| 阳极参考交换电流密度/(A/m2) | 1×103 |
| 扩散层渗透率/m2 | 3×10-12 |
| 催化层渗透率/m2 | 2×10-3 |
| 氧气参考浓度/(mol/m3) | 3.39 |
| 氢气参考浓度/(mol/m3) | 56.4 |
| 氢气质量分数 | 0.7 |
| 水的质量分数 | 0.3 |
表1 几何参数和物理参数
Table 1 Geometrical parameters and the physical parameters
| 参数 | 数值 |
|---|---|
| 流道长度/m | 2×10-2 |
| 流道宽度/m | 1×10-3 |
| 流道高度/m | 1×10-3 |
| 扩散层厚度/m | 3×10-4 |
| 膜厚度/m | 1.08×10-4 |
| 肋宽度/m | 1×10-3 |
| 催化层厚度/m | 1.29×10-5 |
| 尾部弧长/m | 1.9×10-2 |
| 尾部端点切线角/(°) | 28 |
| 参考压力/atm | 1 |
| 工作温度/K | 343.15 |
| 扩散层孔隙率 | 0.4 |
| 扩散层电导率/(S/m) | 750 |
| 阴极入口流速/(m/s) | 0.42 |
| 阳极入口流速/(m/s) | 0.12 |
| 膜电导率/(S/m) | 9.825 |
| 阴极参考交换电流密度/(A/m2) | 1×10-4 |
| 阳极参考交换电流密度/(A/m2) | 1×103 |
| 扩散层渗透率/m2 | 3×10-12 |
| 催化层渗透率/m2 | 2×10-3 |
| 氧气参考浓度/(mol/m3) | 3.39 |
| 氢气参考浓度/(mol/m3) | 56.4 |
| 氢气质量分数 | 0.7 |
| 水的质量分数 | 0.3 |
| [1] | Wan Z H, Liu F, Xu H F, et al. Recent advances and trends of single-atom catalysts for proton exchange membrane fuel cell cathodes[J]. ChemPhysMater, 2024, 3(2): 143-156. |
| [2] | Saidi S, Abbassi R, Pathak P K, et al. Fast and accurate estimation of PEMFCs model parameters using a dimension learning-based modified grey wolf metaheuristic algorithm[J]. Measurement, 2025, 249: 116917. |
| [3] | Liu G Y, Hou F G, Peng S L, et al. Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(5): 1099-1119. |
| [4] | Zuo B, Zhang Z H, Cheng J S, et al. Data-driven flooding fault diagnosis method for proton-exchange membrane fuel cells using deep learning technologies[J]. Energy Conversion and Management, 2022, 251: 115004. |
| [5] | Fu L R, Lin H D, Liu J Y, et al. Optimization of sinusoidal wave-like channel design for HT-PEMFCs based on genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2024, 232: 125964. |
| [6] | Chowdhury M Z, Genc O, Toros S. Numerical optimization of channel to land width ratio for PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10798-10809. |
| [7] | 陈森洋, 靳蒲航, 谭志明, 等. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194. |
| Chen S Y, Jin P H, Tan Z M, et al. Numerical simulation of droplet movement in serpentine channel in proton exchange membrane fuel cell[J]. CIESC Journal, 2024, 75(S1): 183-194. | |
| [8] | 武生威, 付丽荣, 刘维峰, 等. 新型拓展流道PEMFC传质模拟与性能研究[J]. 太阳能学报, 2023, 44(5): 74-79. |
| Wu S W, Fu L R, Liu W F, et al. Mass transfer simulation and performance study of pemfc with new extended flow channel[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 74-79. | |
| [9] | Cai Y H, Wu D, Sun J M, et al. The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC[J]. Energy, 2021, 222: 119951. |
| [10] | Chen Z J, Zuo W, Zhou K, et al. Numerical investigation on the performance enhancement of PEMFC with gradient sinusoidal-wave fins in cathode channel[J]. Energy, 2024, 288: 129894. |
| [11] | Zhou Y, Chen B, Chen W S, et al. A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell[J]. Energy, 2022, 261: 125383. |
| [12] | Perng S W, Wu H W. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC[J]. Applied Energy, 2015, 143: 81-95. |
| [13] | Zeng X B, Ge Y, Shen J, et al. The optimization of channels for a proton exchange membrane fuel cell applying genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2017, 105: 81-89. |
| [14] | 沈俊, 周兵, 邱子朝, 等. 质子交换膜燃料电池强化传质[J]. 化工学报, 2014, 65(S1): 421-425. |
| Shen J, Zhou B, Qiu Z C, et al. Mass transfer enhancement of proton exchange membrane fuel cell[J]. CIESC Journal, 2014, 65(S1): 421-425. | |
| [15] | Zhang S Y, Qu Z G, Xu H T, et al. A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27700-27708. |
| [16] | Gu H L, Peng C, Qian Z C, et al. Design and optimization of gas channel with groove baffles for PEMFC using genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125543. |
| [17] | Li Z J, Fan Z H, Xie X F, et al. An innovative 3D wave channel design for boosting the dynamic response of proton exchange membrane fuel cell stack[J]. Fuel, 2025, 379: 132977. |
| [18] | Chen X, Yu Z K, Yang C, et al. Performance investigation on a novel 3D wave flow channel design for PEMFC[J]. International Journal of Hydrogen Energy, 2021, 46(19): 11127-11139. |
| [19] | 喻峰正, 冼海珍. 质子交换膜燃料电池阴极侧糖葫芦型流道数值模拟研究[J]. 热力发电, 2023, 52(8): 51-59. |
| Yu F Z, Xian H Z. Numerical simulation analysis of sugar gourd type channel on cathode side of proton exchange membrane fuel cell[J]. Thermal Power Generation, 2023, 52(8): 51-59. | |
| [20] | Boni M, Manikanta C S, Velisala V. Experimental evaluation of proton exchange membrane fuel cell performance with sinusoidal flow channel designs[J]. International Journal of Hydrogen Energy, 2024, 53: 1233-1241. |
| [21] | Kaiser R, Ahn C Y, Kim Y H, et al. Performance and mass transfer evaluation of PEM fuel cells with straight and wavy parallel flow channels of various wavelengths using CFD simulation[J]. International Journal of Hydrogen Energy, 2024, 51: 1326-1344. |
| [22] | Gu M, He S R, Jiang X H, et al. Performance investigation of a novel composite channel considering tapered-3D wavy structure[J]. International Journal of Hydrogen Energy, 2023, 48(94): 36918-36936. |
| [23] | 王万腾, 李楠, 许宏鹏, 等. 基于鹦鹉螺仿生结构的流道对PEMFC性能提升研究[J]. 太阳能学报, 2022, 43(6): 448-453. |
| Wang W T, Li N, Xu H P, et al. Study on improving performance of pemfc by flow channel based on nautilus bionic structure[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 448-453. | |
| [24] | Cai G C, Liang Y M, Liu Z C, et al. Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm[J]. Energy, 2020, 192: 116670. |
| [25] | Ke Y Z, Zhang B T, Yuan W, et al. Performance enhancement of proton exchange membrane fuel cells with bio-inspired gear-shaped flow channels[J]. Chemical Engineering Journal, 2023, 474: 145870. |
| [26] | 刘旺玉, 何芋钢, 罗远强, 等. 仿猪笼草结构的质子交换膜燃料电池流道设计[J]. 电源技术, 2022, 46(3): 280-283. |
| Liu W Y, He Y G, Luo Y Q, et al. Design of PEMFC flow channel imitating Nepenthes alata structure[J]. Chinese Journal of Power Sources, 2022, 46(3): 280-283. | |
| [27] | Gao B W, Yan H T, Jiang Y, et al. Optimization design of proton exchange membrane fuel cells with bio-inspired leaf vein flow channels[J]. Process Safety and Environmental Protection, 2024, 190: 645-664. |
| [28] | Anyanwu I S, Hou Y Z, Xi F Q, et al. Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13807-13819. |
| [29] | Sezgin B, Caglayan D G, Devrim Y, et al. Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol multiphysics[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10001-10009. |
| [30] | Ding Y J, Xu L F, Zheng W B, et al. Characterizing the two-phase flow effect in gas channel of proton exchange membrane fuel cell with dimensionless number[J]. International Journal of Hydrogen Energy, 2023, 48(13): 5250-5265. |
| [31] | Wang L, Husar A, Zhou T H, et al. A parametric study of PEM fuel cell performances[J]. International Journal of Hydrogen Energy, 2003, 28(11): 1263-1272. |
| [1] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [2] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [3] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [4] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [5] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [6] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [7] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [8] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [9] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [10] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [11] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [12] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [13] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [14] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [15] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号