化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 246-257.DOI: 10.11949/0438-1157.20250079
• 流体力学与传递现象 • 上一篇
孙九春1,2(
), 桑运龙1,2, 王海涛1,2(
), 贾浩3(
), 朱艳4
收稿日期:2025-01-19
修回日期:2025-03-09
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
王海涛,贾浩
作者简介:孙九春(1976—),男,博士,教授级高级工程师,sjczy999@163.com
基金资助:
Jiuchun SUN1,2(
), Yunlong SANG1,2, Haitao WANG1,2(
), Hao JIA3(
), Yan ZHU4
Received:2025-01-19
Revised:2025-03-09
Online:2025-06-25
Published:2025-06-26
Contact:
Haitao WANG, Hao JIA
摘要:
基于计算流体动力学(CFD)方法,建立了超大直径泥水盾构仓体内泥浆冲刷和输送模型,提出了一种适用于气垫仓的临界不淤流速理论计算方法,并研究了格栅前和泥浆门后射流在不同角度时气垫仓内部流场运动特性。泥浆门后射流角度α=45°时流场优化效果最佳,可显著提高格栅截面平均速度,并促进颗粒进入格栅。不同地质条件下临界不淤流速范围为1.68~1.80 m/s,大粒径颗粒占比越高,临界不淤流速越大;α=45°及α=60°时气垫仓下部中间区域流速高于临界值,可有效降低岩屑沉积风险,并增强颗粒通过率。格栅前射流角度β=30°时,射流形成的湍动能扰动对防止易絮凝细颗粒的沉积具有显著作用。研究结果可为提高仓内岩土颗粒运输效率以及解决渣土滞排等问题提供参考。
中图分类号:
孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257.
Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines[J]. CIESC Journal, 2025, 76(S1): 246-257.
| 管路名称 | 入口管径/m | 出口管径/m |
|---|---|---|
| 中心冲刷 | 0.3 | 0.2×1 0.08×4 |
| 上部冲刷左 | 0.2 | 0.2 |
| 上部冲刷右 | 0.2 | 0.2 |
| 泥浆门前冲刷左 | 0.2 | 0.15 |
| 泥浆门前冲刷右 | 0.2 | 0.15 |
| 破碎机冲刷左 | 0.2 | 0.15 |
| 破碎机冲刷右 | 0.2 | 0.15 |
| 泥浆门后冲刷左1(BJ1) | 0.1 | 0.1 |
| 泥浆门后冲刷左2(BJ2) | 0.1 | 0.1 |
| 泥浆门后冲刷右1(BJ3) | 0.1 | 0.1 |
| 泥浆门后冲刷右2(BJ4) | 0.1 | 0.1 |
| 格栅冲刷左(GJ1) | 0.1 | 0.08 |
| 格栅冲刷右(GJ2) | 0.1 | 0.08 |
| 排浆管 | 0.5 | 0.5 |
表1 进浆各冲刷管路的管径
Table 1 Diameter of each flushing pipeline for slurry inlet
| 管路名称 | 入口管径/m | 出口管径/m |
|---|---|---|
| 中心冲刷 | 0.3 | 0.2×1 0.08×4 |
| 上部冲刷左 | 0.2 | 0.2 |
| 上部冲刷右 | 0.2 | 0.2 |
| 泥浆门前冲刷左 | 0.2 | 0.15 |
| 泥浆门前冲刷右 | 0.2 | 0.15 |
| 破碎机冲刷左 | 0.2 | 0.15 |
| 破碎机冲刷右 | 0.2 | 0.15 |
| 泥浆门后冲刷左1(BJ1) | 0.1 | 0.1 |
| 泥浆门后冲刷左2(BJ2) | 0.1 | 0.1 |
| 泥浆门后冲刷右1(BJ3) | 0.1 | 0.1 |
| 泥浆门后冲刷右2(BJ4) | 0.1 | 0.1 |
| 格栅冲刷左(GJ1) | 0.1 | 0.08 |
| 格栅冲刷右(GJ2) | 0.1 | 0.08 |
| 排浆管 | 0.5 | 0.5 |
| 强风化泥质粉砂岩颗粒直径/mm | 颗粒占比/% | 含黏性土碎石 颗粒直径/mm | 颗粒占比/% |
|---|---|---|---|
| >60 | 8 | >60 | 11 |
| 60~50 | 12 | 60~50 | 8 |
| 50~40 | 12 | 50~40 | 8 |
| 40~30 | 13 | 40~30 | 10 |
| 30~20 | 13 | 30~20 | 10 |
| 20~10 | 17 | 20~10 | 18 |
| <10 | 25 | <10 | 35 |
表2 颗粒级配分布
Table 2 Particle size distribution
| 强风化泥质粉砂岩颗粒直径/mm | 颗粒占比/% | 含黏性土碎石 颗粒直径/mm | 颗粒占比/% |
|---|---|---|---|
| >60 | 8 | >60 | 11 |
| 60~50 | 12 | 60~50 | 8 |
| 50~40 | 12 | 50~40 | 8 |
| 40~30 | 13 | 40~30 | 10 |
| 30~20 | 13 | 30~20 | 10 |
| 20~10 | 17 | 20~10 | 18 |
| <10 | 25 | <10 | 35 |
| 冲刷位置 | 流速/(m/s) | 流量占比/% |
|---|---|---|
| 中心冲刷 | 0 | 0 |
| 上部冲刷左 | 0 | 0 |
| 上部冲刷右 | 0 | 0 |
| 泥浆门前冲刷左 | 4.6 | 15.6 |
| 泥浆门前冲刷右 | 4.6 | 15.6 |
| 破碎机冲刷左 | 4.87 | 16.4 |
| 破碎机冲刷右 | 4.87 | 16.4 |
| 泥浆门后冲刷左1(BJ1) | 11.06 | 6 |
| 泥浆门后冲刷左2(BJ2) | 16.58 | 9 |
| 泥浆门后冲刷右1(BJ3) | 11.06 | 6 |
| 泥浆门后冲刷右2(BJ4) | 16.58 | 9 |
| 格栅冲刷左(GJ1) | 5.53 | 3 |
| 格栅冲刷右(GJ2) | 5.53 | 3 |
表3 冲刷流量设置
Table 3 Scour flow settings
| 冲刷位置 | 流速/(m/s) | 流量占比/% |
|---|---|---|
| 中心冲刷 | 0 | 0 |
| 上部冲刷左 | 0 | 0 |
| 上部冲刷右 | 0 | 0 |
| 泥浆门前冲刷左 | 4.6 | 15.6 |
| 泥浆门前冲刷右 | 4.6 | 15.6 |
| 破碎机冲刷左 | 4.87 | 16.4 |
| 破碎机冲刷右 | 4.87 | 16.4 |
| 泥浆门后冲刷左1(BJ1) | 11.06 | 6 |
| 泥浆门后冲刷左2(BJ2) | 16.58 | 9 |
| 泥浆门后冲刷右1(BJ3) | 11.06 | 6 |
| 泥浆门后冲刷右2(BJ4) | 16.58 | 9 |
| 格栅冲刷左(GJ1) | 5.53 | 3 |
| 格栅冲刷右(GJ2) | 5.53 | 3 |
| 泥浆门后冲刷α | 格栅内冲刷β | 刀盘转速 | 泥浆物性 | 出口压力 |
|---|---|---|---|---|
| 0°/45°/60° | 0°/30° | 1 rad/min | 0.0075 Pa·s | 3 bar |
表4 计算参数设置
Table 4 Parameter settings
| 泥浆门后冲刷α | 格栅内冲刷β | 刀盘转速 | 泥浆物性 | 出口压力 |
|---|---|---|---|---|
| 0°/45°/60° | 0°/30° | 1 rad/min | 0.0075 Pa·s | 3 bar |
| α/(°) | 流速/(m/s) | ||||
|---|---|---|---|---|---|
| 1层 | 2层 | 3层 | 4层 | 5层 | |
| 0 | 0.89 | 0.85 | 0.85 | 0.63 | 0.47 |
| 45 | 0.8 | 0.75 | 0.82 | 0.81 | 0.84 |
| 60 | 0.79 | 0.7 | 0.85 | 0.8 | 0.72 |
表5 格栅通道各层平均流速
Table 5 Average flow velocity of each layer in the grille channel
| α/(°) | 流速/(m/s) | ||||
|---|---|---|---|---|---|
| 1层 | 2层 | 3层 | 4层 | 5层 | |
| 0 | 0.89 | 0.85 | 0.85 | 0.63 | 0.47 |
| 45 | 0.8 | 0.75 | 0.82 | 0.81 | 0.84 |
| 60 | 0.79 | 0.7 | 0.85 | 0.8 | 0.72 |
| 颗粒级配参考依据 | 临界不淤流速/(m/s) |
|---|---|
| 强风化泥质粉砂岩 | 1.78 |
| 含黏性土碎石 | 1.78 |
| 碎石填土 | 1.80 |
| 圆砾 | 1.79 |
| 素填土 | 1.78 |
| 含碎石粉质黏土 | 1.721 |
| 砂质粉土夹粉砂 | 1.714 |
| 全风化安山玢岩 | 1.70 |
| 强风化凝灰质含砾砂岩 | 1.68 |
表6 不同土质的临界不淤流速
Table 6 Critical non siltation flow velocity for different soil types
| 颗粒级配参考依据 | 临界不淤流速/(m/s) |
|---|---|
| 强风化泥质粉砂岩 | 1.78 |
| 含黏性土碎石 | 1.78 |
| 碎石填土 | 1.80 |
| 圆砾 | 1.79 |
| 素填土 | 1.78 |
| 含碎石粉质黏土 | 1.721 |
| 砂质粉土夹粉砂 | 1.714 |
| 全风化安山玢岩 | 1.70 |
| 强风化凝灰质含砾砂岩 | 1.68 |
| 1 | 李金运. 盾构法施工技术在水利地下设施工程中的应用探究[J]. 居舍, 2020(26): 59-60. |
| Li J Y. Application of shield construction technology in water conservancy underground facilities engineering[J]. Jushe, 2020(26): 59-60. | |
| 2 | 孔玉清. 泥水盾构环流系统及排泥管携碴能力分析与应用[J]. 现代隧道技术, 2018, 55(3): 205-213. |
| Kong Y Q. Analysis of the circulation system of a slurry shield and the muck carrying ability of a dredging pipe[J]. Modern Tunnelling Technology, 2018, 55(3): 205-213. | |
| 3 | Anagnostou G, Kovári K. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9(2): 165-174. |
| 4 | 陈黄腾. 盾构机泥浆环流系统设计分析[J]. 河南科技, 2021, 40(3): 84-87. |
| Chen H T. Analysis on the design of mud circulation system of shield machine[J]. Henan Science and Technology, 2021, 40(3): 84-87. | |
| 5 | 王平. 中国超大直径盾构法隧道市场发展形势分析[J]. 建筑科技, 2020, 4(1): 42-46. |
| Wang P. China super-large diameter shielding tunnel market development[J]. Building Technology, 2020, 4(1): 42-46. | |
| 6 | 竺维彬, 钟长平, 米晋生, 等. 超大直径复合式盾构施工技术挑战和展望[J]. 现代隧道技术, 2021, 58(3): 6-16, 42. |
| Zhu W B, Zhong C P, Mi J S, et al. Challenges and prospects of construction technology for extra-large diameter composite shields[J]. Modern Tunnelling Technology, 2021, 58(3): 6-16, 42. | |
| 7 | Zhang Z M, Lin C G, Wu S M. Slurry shield tunnelling in clayey soils: typical problems and countermeasures[J]. Advanced Materials Research, 2011, 1269(243/244/245/246/247/248/249): 2944-2947. |
| 8 | Zumsteg R, Puzrin A M, Anagnostou G. Effects of slurry on stickiness of excavated clays and clogging of equipment in fluid supported excavations[J]. Tunnelling and Underground Space Technology, 2016, 58: 197-208. |
| 9 | 朱伟, 钱勇进, 闵凡路, 等. 中国泥水盾构使用现状及若干问题[J]. 隧道建设, 2019, 39(5): 724-735. |
| Zhu W, Qian Y J, Min F L, et al. The current status and some problems of slurry shield in China[J]. Tunnel Construction, 2019, 39(5): 724-735. | |
| 10 | 竺维彬, 钟长平, 黄威然, 等. 盾构施工“滞排” 成因分析和对策研究[J]. 现代隧道技术, 2014, 51(5): 23-32. |
| Zhu W B, Zhong C P, Huang W R, et al. Cause analysis and countermeasures for “hindered” mucking in shield construction[J]. Modern Tunnelling Technology, 2014, 51(5): 23-32. | |
| 11 | 姜桥. 超大直径泥水盾构防滞排关键技术研究[J]. 隧道建设, 2021, 41(S2): 620-625. |
| Jiang Q. Key technology of hysteresis control for super-large-diameter slurry shield[J]. Tunnel Construction, 2021, 41(S2): 620-625. | |
| 12 | Eddingfield D L, Albrecht M. Effect of an air-injected shroud on the breakup length of a high-velocity waterjet[M]//Erosion: Prevention and Useful Applications. Pennsylvania: ASTM International, 1979: 461-472. |
| 13 | Momber A W. Concrete failure due to air-water jet impingement[J]. Journal of Materials Science, 2000, 35(11): 2785-2789. |
| 14 | Annoni M, Arleo F, Malmassari C. CFD aided design and experimental validation of an innovative air assisted pure water jet cutting system[J]. Journal of Materials Processing Technology, 2014, 214(8): 1647-1657. |
| 15 | 李记玉. 气体保护射流特性及破岩实验研究[D]. 东营: 中国石油大学, 2008. |
| Li J Y. Study on Characteristics of gas shrouded water jet and rock-erosion experiments[D]. Dongying: China University of Petroleum, 2008. | |
| 16 | 胡东, 王晓川, 康勇, 等. 自振脉冲气液射流振荡及其冲蚀煤岩效应[J]. 中国矿业大学学报, 2015, 44(6): 983-989. |
| Hu D, Wang X C, Kang Y, et al. Oscillating characteristics of the self-excited pulsed air-water jet and its erosion performance of coal-rock[J]. Journal of China University of Mining & Technology, 2015, 44(6): 983-989. | |
| 17 | 卢义玉, 葛兆龙, 李晓红, 等. 高压空化水射流破岩主要影响因素的研究[J]. 四川大学学报(工程科学版), 2009, 41(6): 1-5. |
| Lu Y Y, Ge Z L, Li X H, et al. Study on main factors of rock breakage with high-pressure cavitating water jets[J]. Journal of Sichuan University, 2009, 41(6): 1-5. | |
| 18 | Babcock H A. Heterogeneous flow of heterogeneous solids[M]//Advances in Solid-Liquid Flow in Pipes and its Application. Amsterdam: Elsevier, 1971: 125-148. |
| 19 | Wasp E J, Kenny J P, Gandhi R L. Solid-Liquid Flow Slurry Pipeline Transportation[M]. Houston: Gulf Pub. Co., 1979. |
| 20 | 费祥俊, 王可钦, 翟大潜, 等. 长距离管道输送中浆体物理特性及输送参数的试验研究[J]. 水利学报, 1984 (11): 15-25. |
| Fei X J, Wang K Q, Zhai D Q, et al. Experimental study on physical properties and transport parameters of slurry in long distance pipeline transportation[J]. Journal of Hydraulic Engineering, 1984 (11): 15-25. | |
| 21 | Liu M B, Liao S M, Shi Z H, et al. Analytical study and field investigation on the effects of clogging in slurry shield tunneling[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2023, 133: 104957. |
| 22 | 刘乐. 泥水盾构环流系统冲刷效率的影响因素研究[J]. 工程机械与维修, 2022(6): 284-287. |
| Liu L. Study on influencing factors of scour efficiency of slurry shield circulating system[J]. Construction Machinery & Maintenance, 2022(6): 284-287. | |
| 23 | 郭守志. 大直径泥水盾构滞排预警模型研究及应用[J]. 铁道建筑技术, 2022(10): 43-45, 65. |
| Guo S Z. Research and application of clogging prediction model in large-diameter slurry shield construction[J]. Railway Construction Technology, 2022(10): 43-45, 65. | |
| 24 | 吕萍. 抗泥型聚羧酸减水剂研究及应用的分析[J]. 化工管理, 2019(9): 46-47. |
| Lyu P. Research and application analysis of mud-resistant polycarboxylic acid water reducer[J]. Chemical Engineering Management, 2019(9): 46-47. | |
| 25 | 葛欣, 于连林, 刘晓杰. 浅析泥土对不同结构聚羧酸减水剂的吸附规律[J]. 上海化工, 2014, 39(10): 15-19. |
| Ge X, Yu L L, Liu X J. Analysis on absorption rule of polycarboxylate superplasticizers with various structures in clay[J]. Shanghai Chemical Industry, 2014, 39(10): 15-19. | |
| 26 | 穆文庆. 盾构渣土改良剂在黏土地层中的研究应用[J]. 广东化工, 2023, 50(10): 25-27. |
| Mu W Q. Research and application of shield muck improver in clay layer [J]. Guangdong Chemical Industry, 2023, 50(10): 25-27. | |
| 27 | 郑大锋, 邱学青, 楼宏铭, 等. 不同相对分子质量木质素磺酸钙在盾构砂浆中的应用[J]. 化工学报, 2007, 58(9): 2382-2387. |
| Zheng D F, Qiu X Q, Lou H M, et al. Utilization of calcium lignosulfonate with different molecular masses in mortar for shield tunneling method [J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9): 2382-2387. | |
| 28 | 严辉. 盾构隧道施工中刀盘泥饼的形成机理和防治措施[J]. 现代隧道技术, 2007(4): 24-27, 35. |
| Yan H. Mechanism of the formation and the prevention of clay cakes in shield tunneling[J]. Modern Tunnelling Technology, 2007(4): 24-27, 35. | |
| 29 | Sass I, Burbaum U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34. |
| 30 | Zumsteg R, Puzrin A M. Stickiness and adhesion of conditioned clay pastes[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2012, 31: 86-96. |
| 31 | 樊兴. 石油化工工艺管道的腐蚀及防护技术应用[J]. 中国石油和化工标准与质量, 2024, 44(10): 157-159. |
| Fan X. Corrosion of petrochemical process pipeline and application of protective technology[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(10): 157-159. | |
| 32 | 黄昌富, 孙丹丹, 郑太毅, 等. 硫酸盐侵蚀盾构隧道管片时变损伤特性及耐久性研究[J]. 土木工程学报, 2024, 57(S1): 128-133. |
| Huang C F, Sun D D, Zheng T Y, et al. Time-varying damage characteristics and durability of shield tunnel segments under sulfate attack[J]. China Civil Engineering Journal, 2024, 57(S1): 128-133. | |
| 33 | 张志恒. 盾构机刀具电化学耐腐蚀层试验[J]. 装备机械, 2023(2): 83-88. |
| Zhang Z H. The magazine on equipment machinery [J]. The Magazine on Equipment Machinery, 2023(2): 83-88. | |
| 34 | Pitt M, 刘海君. 马氏漏斗及钻井液黏度: 油田应用的新方程[J]. 国外油田工程, 2001(12): 28-31. |
| Pitt M, Liu H J. Markov funnel and drilling fluid viscosity: a new equation for oilfield application[J]. Foreign Oilfield Engineering, 2001(12): 28-31. | |
| 35 | 费祥俊. 浆体与粒状物料输送水力学[M]. 北京: 清华大学出版社, 1994. |
| Fei X J. Hydraulics of Slurry and Granular Material Transportation[M]. Beijing: Tsinghua University Press, 1994. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [4] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [5] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| [6] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [7] | 许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558. |
| [8] | 徐东亮, 赵彬彬, 孙逸玫, 刘婷婷, 刘筱然, 陈明功. 基于修正多孔介质模型的RPB模拟与流场特性研究[J]. 化工学报, 2025, 76(4): 1569-1582. |
| [9] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [10] | 贾文龙, 肖欢, 冷翔宇, 黄巧竞, 刘程玮, 吴瑕. 原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟[J]. 化工学报, 2025, 76(3): 1288-1296. |
| [11] | 禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049. |
| [12] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| [13] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| [14] | 张泽雨, 王平, 戴凯论, 钱伟佳, Roy Subhajit, 帅瑞洋, Ferrante Antonio. 轴向双级氨/甲烷湍流预混火焰燃烧特性及NO生成[J]. 化工学报, 2025, 76(2): 835-845. |
| [15] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号