化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5402-5413.DOI: 10.11949/0438-1157.20250551
王胜杰1(
), 周少斌1, 高明1(
), 武治星2, 郭文强2, 张伟2, 姜君2, 冉劼2, 王晓3
收稿日期:2025-05-19
修回日期:2025-07-24
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
高明
作者简介:王胜杰(2001—),男 ,硕士研究生,wsj2029@mail.sdu.edu.cn
基金资助:
Shengjie WANG1(
), Shaobin ZHOU1, Ming GAO1(
), Zhixing WU2, Wenqiang GUO2, Wei ZHANG2, Jun JIANG2, Jie RAN2, Xiao WANG3
Received:2025-05-19
Revised:2025-07-24
Online:2025-10-25
Published:2025-11-25
Contact:
Ming GAO
摘要:
为改善管壳式相变储热器的储放热性能,基于内管可移动卧式管壳相变储放热实验平台,结合高精图数采集系统与固液相界面定量表征方法,研究了换热内管在既定竖直运动方向下不同移动速率(0.01、0.05和0.1 mm·s-1)与移动距离(5、10和20 mm)对储放热特性的影响规律。结果表明,内管运动可有效强化相变材料的传热过程,储放热性能随内管移动速率和距离的增加而增强。与静止状态相比,优化的内管运动策略下储放热时间分别减少5221和1978 s,平均温度变化率分别提高至静止时的1.82倍和1.07倍。研究结论可为内管移动式相变储热装置的优化设计提供指导,并为主动强化传热技术的研究奠定基础。
中图分类号:
王胜杰, 周少斌, 高明, 武治星, 郭文强, 张伟, 姜君, 冉劼, 王晓. 内管移动对卧式管壳相变储热器储放热性能影响的实验研究[J]. 化工学报, 2025, 76(10): 5402-5413.
Shengjie WANG, Shaobin ZHOU, Ming GAO, Zhixing WU, Wenqiang GUO, Wei ZHANG, Jun JIANG, Jie RAN, Xiao WANG. Experimental study on influence of inner tube movement on charging-discharging performance in horizontal shell-and-tube phase change thermal energy storage exchanger[J]. CIESC Journal, 2025, 76(10): 5402-5413.
图1 内管移动储热器实验测试平台系列图
Fig.1 Shell-and-tube phase change thermal energy storage exchanger with mobile inner tube experimental test platform series figure
| 物性参数 | 数值 |
|---|---|
| 熔化温度/K | 298.15 |
| 潜热/(J·g-1) | 228 |
| 密度/(g·cm-3) | 液相:0.76;固相:0.78 |
| 热导率/(W·m-1·K-1) | 0.2 |
| 黏度/(kg·m-1·s-1) | 0.0017 |
| 热膨胀系数 | 0.001 |
| 比热容/(J·g-1·K-1) | 液相:2.4;固相:1.8 |
表1 RT25 PCM物性参数
Table 1 Physical property parameter of RT25 PCM
| 物性参数 | 数值 |
|---|---|
| 熔化温度/K | 298.15 |
| 潜热/(J·g-1) | 228 |
| 密度/(g·cm-3) | 液相:0.76;固相:0.78 |
| 热导率/(W·m-1·K-1) | 0.2 |
| 黏度/(kg·m-1·s-1) | 0.0017 |
| 热膨胀系数 | 0.001 |
| 比热容/(J·g-1·K-1) | 液相:2.4;固相:1.8 |
| 参数 | 数值 |
|---|---|
| 内管移动速率/(mm·s-1) | 0.01、0.05、0.1 |
| 内管移动距离/mm | 5、10、20 |
| 内管移动方向 | -y |
表2 内管运动参数设置
Table 2 Inner tube motion parameter setting
| 参数 | 数值 |
|---|---|
| 内管移动速率/(mm·s-1) | 0.01、0.05、0.1 |
| 内管移动距离/mm | 5、10、20 |
| 内管移动方向 | -y |
| 性能指标 | 数值 |
|---|---|
| βm/% | 54.84 |
| βs/% | 32.63 |
| Pm/W | 128.05 |
| Ps/W | 32.90 |
| VT/(℃·min-1) | 0.229 |
| 0.397 | |
| Δτ0-2/s | 11702 |
| Δτ30%/s | 13665 |
表3 内管静止状态性能评价参数
Table 3 Performance evaluation parameter of inner tube stationary condition
| 性能指标 | 数值 |
|---|---|
| βm/% | 54.84 |
| βs/% | 32.63 |
| Pm/W | 128.05 |
| Ps/W | 32.90 |
| VT/(℃·min-1) | 0.229 |
| 0.397 | |
| Δτ0-2/s | 11702 |
| Δτ30%/s | 13665 |
| [1] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. |
| Chen H S, Li H, Xu Y J, et al. Research progress of energy storage technology in China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. | |
| [2] | Boujelbene M, Mohammed H I, Sultan H S, et al. A comparative study of twisted and straight fins in enhancing the melting and solidifying rates of PCM in horizontal double-tube heat exchangers[J]. International Communications in Heat and Mass Transfer, 2024, 151: 107224. |
| [3] | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
| Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
| [4] | 熊鑫. 管壳式相变蓄热单元的强化传热研究[D]. 包头: 内蒙古科技大学, 2023. |
| Xiong X. Heat transfer enhancement of shell and tube phase change heat storage unit[D]. Baotou: Inner Mongolia University of Science & Technology, 2023. | |
| [5] | 吕明璐, 杨鑫, 张瑶, 等. 换热器的现状分析及分类应用[J]. 当代化工, 2018, 47(3): 582-584. |
| Lyu M L, Yang X, Zhang Y, et al. Current situation analysis and classified application of heat exchangers[J]. Contemporary Chemical Industry, 2018, 47(3): 582-584. | |
| [6] | 李海东, 张奇琪, 杨路, 等. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
| Li H D, Zhang Q Q, Yang L, et al. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms[J]. CIESC Journal, 2025, 76(1): 241-255. | |
| [7] | Xu Z L, Zhang X L, Ji J. Research progress of phase change heat storage technology in the application of solar heat pump[J]. Journal of Energy Storage, 2024, 86: 111272. |
| [8] | 刘云龙, 龙威, 别玉, 等. 管壳式相变储热器场协同效应及影响因素研究[J]. 中国电机工程学报, 2025, 45(12): 4780-4791. |
| Liu Y L, Long W, Bie Y, et al. Study on field synergy effect and influencing factors of shell-and-tube phase change heat storage[J]. Proceeding of the CSEE, 2025, 45(12): 4780-4791. | |
| [9] | 毕胜, 于鑫宇, 闫博文, 等. 石蜡基相变材料在储热领域的研究进展[J]. 科技创新与应用, 2024, 14(24): 79-84. |
| Bi S, Yu X Y, Yan B W, et al. Research progress of paraffin-based phase change materials in the field of thermal storage[J]. Technology Innovation and Application, 2024, 14(24): 79-84. | |
| [10] | Zhang X Y, Ge Y T, Burra, et al. Experimental investigation and CFD modelling analysis of finned-tube PCM heat exchanger for space heating[J]. Applied Thermal Engineering, 2024, 244: 122731. |
| [11] | 戴宇成, 王增鹏, 刘凯豹, 等. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
| Dai Y C, Wang Z P, Liu K B, et al. Research progress of heat storage and heat transfer enhancement based on phase change materials[J] Energy Storage Science and Technology, 2023, 12(2): 431-458. | |
| [12] | Li H T, Dai H, Zhou S B, et al. Influence of movable inner tube on the charging performance for a horizontal latent thermal energy storage exchanger[J]. Journal of Energy Storage, 2024, 76: 109831. |
| [13] | Choure B K, Alam T, Kumar R. A review on heat transfer enhancement techniques for PCM based thermal energy storage system[J]. Journal of Energy Storage, 2023, 72: 108161. |
| [14] | Zhang J, Cao Z, Huang S, et al. Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles[J]. Applied Energy, 2023, 342: 121158. |
| [15] | Zhu R S, Jing D L. Numerical study on the discharging performance of a latent heat thermal energy storage system with fractal tree-shaped convergent fins[J]. Renewable Energy, 2024, 221: 119726. |
| [16] | 张欣宇, 杨晓宏, 张燕楠, 等. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409. |
| Zhang X Y, Yang X H, Zhang Y N, et al. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins[J]. CIESC Journal, 2022, 73(10): 4399-4409. | |
| [17] | 沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376. |
| Shen Y L, Zhang P W, Liu S L. Comparative study on the performance of cascaded latent heat storage system enhanced by fins and porous media[J]. CIESC Journal, 2022, 73(10): 4366-4376. | |
| [18] | Huang X Y, Du Z, Li Y J, et al. Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: an experimental and numerical study[J]. Energy, 2024, 302: 131813. |
| [19] | Hamid R, Mehrdoost Z. Thermal performance enhancement of multiple tubes latent heat thermal energy storage system using sinusoidal wavy fins and tubes geometry modification[J]. Applied Thermal Engineering, 2024, 245: 122750. |
| [20] | 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243. |
| Xu Y, Zheng Z J, Li M J. Study on rapid performance prediction of shell-and-tube phase change heat storage[J]. CIESC Journal, 2019, 70(S2): 237-243. | |
| [21] | Rashid F L, Rahbari A, Ibrahem R K, et al. Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration[J]. Journal of Energy Storage, 2023, 67: 107501. |
| [22] | Yang C, Zheng Z J, Cai X, et al. Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2022, 215: 118877. |
| [23] | Selvakumar R D, Alkaabi A K. Design and performance evaluation of a novel electrohydrodynamically enhanced PCM heat sink[J]. Journal of Energy Storage, 2024, 94: 112375. |
| [24] | Zheng Z J, Sun Y, Chen Y, et al. Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube[J]. Journal of Energy Storage, 2023, 62: 106801. |
| [25] | Li B F, Yang X L, Yu N, et al. Performance analysis and multi-objective optimization of a rotating triple-tube latent heat thermal energy storage unit with V-fin[J]. Applied Thermal Engineering, 2025, 264: 125405. |
| [26] | Huang X Y, Li F F, Guo J F, et al. Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source[J]. Applied Energy, 2024, 362: 122997. |
| [27] | Huang X Y, Liu Z M, Gao X Y, et al. Application of actively enhanced solar phase change heat storage system in building heating: a numerical and statistical optimization study[J]. Renewable Energy, 2025, 241: 122328. |
| [28] | Wu Y H, Luo M J, Chen S, et al. Numerical simulation study of the effect of mechanical vibration on heat transfer in a six-fin latent heat thermal energy storage unit[J]. International Journal of Heat and Mass Transfer, 2023, 207: 123996. |
| [29] | Yang C, Xu Y, Xu X R, et al. Melting performance analysis of finned metal foam thermal energy storage tube under steady rotation[J]. International Journal of Heat and Mass Transfer, 2024, 226: 125458. |
| [30] | Zhou S B, Dai H, Chen H M, et al. Influence of the inner tube rotation and translation associated movement on the charging performance for the latent heat thermal energy storage exchangers[J]. Renewable Energy, 2024, 237: 121531. |
| [31] | Bahrami H R, Ghaedi M. Enhancement of charging time in a shell-and-tube latent heat storage system using innovative inner-tube motion profiles: a numerical study[J]. Energy Conversion and Management: X, 2025, 26: 100981. |
| [1] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [2] | 张圣美, 李明, 张莹, 易茜, 杨依婷, 刘雅莉. 乳化剂和温度对相变微胶囊性能的影响分析[J]. 化工学报, 2025, 76(S1): 444-452. |
| [3] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [4] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [5] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [6] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [7] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [8] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [9] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [10] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [11] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [12] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [13] | 吴迪, 胡斌, 姜佳彤. R1233zd(E)高温热泵实验研究与应用分析[J]. 化工学报, 2025, 76(S1): 377-383. |
| [14] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [15] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号