| [1] |
Reynolds O. On certain dimensional properties of matter in the gaseous state[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 727-845.
|
| [2] |
Muntz E P, Sone Y, Aoki K, et al. Performance analysis and optimization considerations for a Knudsen compressor in transitional flow[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(1): 214-224.
|
| [3] |
Kugimoto K, Hirota Y, Yamauchi T, et al. A novel heat pump system using a multi-stage Knudsen compressor[J]. International Journal of Heat and Mass Transfer, 2018, 127: 84-91.
|
| [4] |
Vargo S E, Muntz E P. Initial results from the first MEMS fabricated thermal transpiration-driven vacuum pump[C]// AIP Conference Proceedings. New York: American Institute of Physics, 2001, 585(1): 502-509.
|
| [5] |
Zhang W J, Lu W, Wang B T. Performance analysis of a novel thermal transpiration vacuum cooling system[J]. International Journal of Green Energy, 2022, 19(2): 149-158.
|
| [6] |
An S, Gupta N K, Gianchandani Y B. A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum[J]. Journal of Microelectromechanical Systems, 2014, 23(2): 406-416.
|
| [7] |
Lotfian A, Roohi E. Binary gas mixtures separation using microscale radiometric pumps[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105061.
|
| [8] |
Baier T, Hardt S. Gas separation in a Knudsen pump inspired by a Crookes radiometer[J]. Microfluidics and Nanofluidics, 2020, 24(6): 41.
|
| [9] |
Nakaye S, Sugimoto H, Gupta N K, et al. Thermally enhanced membrane gas separation[J]. European Journal of Mechanics-B/Fluids, 2015, 49: 36-49.
|
| [10] |
Nakaye S, Sugimoto H. Demonstration of a gas separator composed of Knudsen pumps[J]. Vacuum, 2016, 125: 154-164.
|
| [11] |
Sugimoto H, Hibino M. Numerical analysis on gas separator with thermal transpiration in micro channels[C]// AIP Conference Proceedings. New York: American Institute of Physics, 2012, 1501(1): 794-801.
|
| [12] |
Klein T A. Energy conversion using thermal transpiration: optimization of a Knudsen compressor[D]. Cambridge: Massachusetts Institute of Technology, 2012.
|
| [13] |
王博韬. 热流逸效应的抽真空特性及其在真空制冷中的应用[D]. 南宁: 广西大学, 2018.
|
|
Wang B T. Vacuum pumping characteristics and vacuum cooling application of thermal transpiration effect[D]. Nanning: Guangxi University, 2018.
|
| [14] |
柯杰坤. 热流逸效应下混氢天然气的传输特性及其分离研究[D]. 南宁: 广西大学, 2024.
|
|
Ke J K. Study of transport characteristics and separation based on thermal transpiration effect in hydrogen blending natural gas[D]. Nanning: Guangxi University, 2018.
|
| [15] |
Zou Q S, He X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598.
|
| [16] |
D'Orazio A, Succi S. Boundary conditions for thermal lattice Boltzmann simulations[C]// Computational Science-ICCS 2003. Berlin, Heidelberg: Springer, 2003: 977-986.
|
| [17] |
Tian Z W, Zou C, Liu H J, et al. Lattice Boltzmann scheme for simulating thermal micro-flow[J]. Physica A: Statistical Mechanics and its Applications, 2007, 385(1): 59-68.
|
| [18] |
Tang G H, Zhang Y H, Gu X J, et al. Lattice Boltzmann model for thermal transpiration[J]. Physical Review E, 2009, 79(2): 027701.
|
| [19] |
Sheng Q, Tang G H, Gu X J, et al. Simulation of thermal transpiration flow using a high-order moment method[J]. International Journal of Modern Physics C, 2014, 25(11): 1450061.
|
| [20] |
Zhang Y H, Gu X J, Barber R W, et al. Modelling thermal flow in the transition regime using a lattice Boltzmann approach[J]. Europhysics Letters (EPL), 2007, 77(3): 30003.
|
| [21] |
Li L K, Mei R W, Klausner J F. Boundary conditions for thermal lattice Boltzmann equation method[J]. Journal of Computational Physics, 2013, 237: 366-395.
|
| [22] |
Sharipov F. Data on the velocity slip and temperature jump on a gas-solid interface[J]. Journal of Physical and Chemical Reference Data, 2011, 40(2): 023101.
|
| [23] |
Isfahani A H M, Soleimani A, Homayoon A. Simulation of high Knudsen number gas flows in nanochannels via the lattice Boltzmann method[J]. Advanced Materials Research, 2011, 403/404/405/406/407/408: 5318-5323.
|
| [24] |
Karimipour A. Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 85: 143-151.
|
| [25] |
Shokouhmand H, Isfahani A H M. An improved thermal lattice Boltzmann model for rarefied gas flows in wide range of Knudsen number[J]. International Communications in Heat and Mass Transfer, 2011, 38(10): 1463-1469.
|
| [26] |
Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows Fundamentals and Simulation[M]. Berlin: Springer, 2005.
|
| [27] |
Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows[J]. Journal of Fluids Engineering, 1996, 118(3): 448-456.
|
| [28] |
陈浮, 宋彦萍, 陈焕龙, 等. 气体动力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2013.
|
|
Chen F, Song Y P, Chen H L, et al. Fundamentals of Gas Dynamics[M]. Harbin: Harbin Institute of Technology Press, 2013.
|
| [29] |
Rahouadja Z, Madjid H. Microchannel fluid flow and heat transfer by lattice Boltzmann method[C]// 4th Micro and Nano Flows Conference. London: UCL Engineering, 2014: 1-8.
|
| [30] |
林建忠, 包福兵, 张凯, 等. 微纳流动理论及应用[M]. 北京: 科学出版社, 2010.
|
|
Lin J Z, Bao F B, Zhang K, et al. Theory and Applications of Micro- and Nano-Scale Flow[M]. Beijing: China Science Publishing & Media Ltd, 2010.
|
| [31] |
胡立冰. 微尺度气体流动的格子Boltzmann模拟[D]. 沈阳: 东北大学, 2012.
|
|
Hu L B. Lattice boltzmann simulation to micro-scale gas flows[D]. Shenyang: Northeastern University, 2012.
|
| [32] |
Cercignani C. Higher order slip according to the linearized Boltzmann equation: Institute of Engineering Research Report AS-64-19[R]. Berkeley: University of California, 1964.
|
| [33] |
Maxwell J C. On the dynamical theory of gases[J]. Philosophical Transactions of the Royal Society of London, 1867, 157: 49-88.
|
| [34] |
Toschi F, Succi S. Lattice Boltzmann method at finite Knudsen numbers[J]. Europhysics Letters (EPL), 2005, 69(4): 549-555.
|