化工学报

• •    

煤气化熔渣结构的多尺度研究进展

高龙飞1,2(), 白进1,2(), 刘星辰1,2, 孔令学1,2, 李怀柱1, 白宗庆1,2, 李文1,2   

  1. 1.中国科学院山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
    2.中国科学院大学,北京 100049
  • 收稿日期:2025-08-04 修回日期:2025-11-10 出版日期:2025-11-11
  • 通讯作者: 白进
  • 作者简介:高龙飞(1995—),男,博士,助理研究员,gaolongfei@sxicc.ac.cn
  • 基金资助:
    国家自然科学基金项目(22508401);国家自然科学基金项目(U23A20129);榆林学院中国科学院洁净能源创新研究院联合基金(YLU-DNLFund2025005);山西省基础研究计划(202403011241007)

Advances in multiscale study of coal gasification slag structure

Longfei GAO1,2(), Jin BAI1,2(), Xingchen LIU1,2, Lingxue KONG1,2, Huaizhu LI1, Zongqing BAI1,2, Wen LI1,2   

  1. 1.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-08-04 Revised:2025-11-10 Online:2025-11-11
  • Contact: Jin BAI

摘要:

煤炭清洁高效利用是我国能源转型的关键路径,气流床气化作为现代煤化工的核心工艺,熔渣流动性决定着气化炉运行稳定性。气化熔渣的结构特征决定了其黏度、熔点等关键物化性质,本文系统综述了熔渣从宏观、介观到微观的多尺度结构研究进展,论述了其多维结构特征,总结了各尺度结构参数的计算原理及分析方法,回顾了硅酸盐熔体领域的理论发展概况。论述了实验表征、分子模拟技术以及人工智能等方法在熔渣研究中的关键进展,以及各类方法的优势与局限。通过对聚合度理论、电荷补偿理论到氧键结构、环分布以及动态演化理论的梳理,论述了熔渣体系从静态统计描述到动态演化机制认知的范式转变。研究发现熔渣结构的动态演化主导流变行为,未来需发展原位表征技术耦合机器学习和多尺度模拟,构建高质量、标准化的物性与结构数据库,并发展融合物理机理的可解释机器学习模型,为熔渣性质的精准调控与气化工艺的优化提供坚实的理论基石。

关键词: 煤气化, 熔渣结构, 灰化学, 多尺度, 分子模拟, 显微结构

Abstract:

Coal clean and efficient utilization constitutes a critical pathway for China's energy transition. Entrained-flow gasification, serving as the core process in modern coal chemical engineering, relies on the flowability of molten slag to determine gasifier operational stability. The structural characteristics of gasification slag fundamentally govern its key physicochemical properties. This paper systematically reviews research progress on the multi-scale structure of molten slag, and summarizes the computational principles and analytical methods for structural parameters at each scale. An overview of theoretical developments in silicate melts is also provided. The key progress in experimental characterization, molecular simulation, and artificial intelligence applied to slag research is examined, along with the advantages and limitations of each approach. By tracing the theoretical evolution from polymerization and charge compensation to oxygen bond structure, ring statistics, and dynamic behavior, this article highlights a paradigm shift in understanding slag systems—from static statistical description to dynamic evolution mechanisms. The study reveals that the dynamic evolution of slag structure governs its rheological behavior. Moving forward, it is imperative to develop in situ characterization techniques coupled with machine learning and multi-scale simulations, establish high-quality and standardized databases of physicochemical properties and structures, and create interpretable machine learning models integrated with physical mechanisms. These efforts will provide a solid theoretical foundation for the precise regulation of slag properties and the optimization of gasification processes.

Key words: coal gasification, slag structure, coal ash chemistry, multiscale, molecular simulation, microstructure

中图分类号: