化工学报

• •    

燃料电池数字孪生系统综述

姚晓多1(), 许强辉2, 张文强1,3()   

  1. 1.北京理工大学长三角研究院,浙江 嘉兴 314019
    2.北京理工大学机械与车辆学院,北京 100081
    3.北京理工大学机电学院,北京 100081
  • 收稿日期:2025-10-16 修回日期:2025-10-27 出版日期:2025-11-11
  • 通讯作者: 张文强
  • 作者简介:姚晓多(2001—),女,硕士研究生,E-mail:2418379269@qq.com
  • 基金资助:
    国家重点研发计划(2024YFB4007302)

An Overview of Digital Twin Systems for Fuel Cells

Xiaoduo YAO1(), Qianghui XU2, Wenqiang ZHANG1,3()   

  1. 1.Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, Zhejiang, China
    2.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    3.School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-10-16 Revised:2025-10-27 Online:2025-11-11
  • Contact: Wenqiang ZHANG

摘要:

燃料电池凭借其高效率、零排放和长寿命等优势,在可持续能源体系中的地位日益凸显。而数字孪生技术作为理论向工程转化的关键人工智能工具,提供了一个虚拟建模平台,为燃料电池的全生命周期管理提供创新解决方案。首先论述了燃料电池的发展现状、工作原理,随后解释了数字孪生系统的功能、架构和结构以及其在燃料电池领域的发展潜力。探讨了数字孪生系统在燃料电池领域的应用,分别从质子交换膜燃料电池的多物理场预测、燃料电池数字孪生的管理系统以及数字孪生系统在燃料电池剩余使用寿命预测与健康管理三方面进行总结论述。最后阐述了数字孪生系统应用于燃料电池的挑战与发展前景。

关键词: 燃料, 燃料电池, 数字孪生, 质子交换膜, 预测, 多物理场预测, 管理系统, 剩余使用寿命

Abstract:

Fuel cells are attracting increasing attention in sustainable energy systems because of their high efficiency, zero emissions, and long lifespan. Digital Twin technology, as an AI-driven enabling tool, bridges theoretical models and engineering applications by providing a virtual modeling platform. This platform supports innovative solutions for the full life-cycle management of fuel cells.This paper systematically reviews the current development and working principles of fuel cells, and presents the basic functions, architecture, and framework of digital twin systems, along with their potential applications in the fuel cell field. Furthermore, the applications of digital twin systems in fuel cells are summarized from three perspectives: (1) multi-physics prediction within proton exchange membrane fuel cells; (2) digital-twin-based fuel cell management systems; and (3) Digital Twin implementations for remaining useful life prediction and health management. Finally, the challenges and future development trends of digital twin technology for fuel cells are discussed and summarized.

Key words: fuel, fuel cells, digital twin, proton exchange membrane, prediction, multi-physics prediction, management system, remaining useful life

中图分类号: