化工学报

• •    

开放式微通道与射流冲击混合冷却协同作用机制研究

李逸飞1(), 郭聿铭1,2, 赵亮1()   

  1. 1.西安交通大学绿色氢电全国重点实验室,陕西 西安 710049
    2.比亚迪汽车有限公司新技术院,陕西 西安 710119
  • 收稿日期:2025-06-26 修回日期:2025-08-19 出版日期:2025-11-13
  • 通讯作者: 赵亮
  • 作者简介:李逸飞(1999—),男,博士研究生,liyifei0709@stu.xjtu.edu.cn
  • 基金资助:
    承接国家重大科技项目(CJGJZD20240729113602004)

Synergistic mechanism in open microchannel and jet impingement hybrid cooling system

Yifei LI1(), Yuming GUO1,2, Liang ZHAO1()   

  1. 1.State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.Automotive New Technology Research Institute, BYD Company Limited, Xi’an 710119, Shaanxi, China
  • Received:2025-06-26 Revised:2025-08-19 Online:2025-11-13
  • Contact: Liang ZHAO

摘要:

高功率、高集成的电子器件,对热设计构成了重大挑战。因气泡脱离路径与液体补充路径相互冲突,导致核态沸腾阶段气泡聚集、临界热通量提前触发成为流动沸腾热设计方案提高换热能力的瓶颈。为了研究射流冲击开放式微通道中分离气泡脱离与液体补充路径的机制,本文结合可视化实验结果与仿真计算研究了惯性力对气泡分布的影响。研究发现,随着通道顶部间隙缩小,气泡大量聚集在通道底部,抑制了核态沸腾,这是因为顶部间隙缩小时,通道底部惯性力的增幅(309.1%)远高于顶部(50.9%),气泡在惯性力作用下更容易脱离和聚集,使通道流和喷射流协同作用分离气泡脱离与液体补充路径的机制失效,从而使临界热通量更容易触发。研究结果对于微通道临界热通量触发机制的探索以及换热能力的提升具有重要意义。

关键词: 微通道, 微喷射, 两相流, 气泡行为, 传热

Abstract:

High-power, highly integrated electronic devices present significant challenges for thermal design. Due to the conflict between bubble detachment and liquid replenishment paths, the bubbles accumulate during the nucleate boiling stage and the critical heat flux is triggered in advance, which becomes a bottleneck for the flow boiling thermal design solutions to improve the heat transfer capacity. To study the mechanism of separated bubble detachment and liquid replenishment paths in an open microchannel under jet impingement, this paper investigates the influence of inertial force on bubble distribution by combining visual experimental results with simulation calculations. The results have found that as the top gap of the channel narrows, a large number of bubbles accumulate at the bottom of the channel, inhibiting nucleate boiling. This is because when the top gap shrinks, the increase in inertial force at the bottom of the channel (309.1%) is much higher than that at the top (50.9%). Under the action of inertial force, bubbles are more likely to detach and accumulate, which invalidates the mechanism where the channel flow and jet flow work together to separate bubble detachment path from liquid replenishment path, thereby making the critical heat flux more likely to be triggered. The research is of great significance for exploring the critical heat flux triggering mechanism in microchannels and improving the heat transfer capacity of microchannels.

Key words: microchannels, microjets, two-phase flow, bubble behavior, heat transfer

中图分类号: