• •
收稿日期:2025-09-29
修回日期:2025-10-24
出版日期:2025-11-13
通讯作者:
王淑彦
作者简介:丁诺(2000—),男,博士研究生,dingnuo@stu.nepu.edu.cn
基金资助:
Nuo DING(
), Shuyan WANG(
), Baoli SHAO, Xi CHEN, Hua CHEN
Received:2025-09-29
Revised:2025-10-24
Online:2025-11-13
Contact:
Shuyan WANG
摘要:
气固流化床中,介于颗粒尺度与宏观尺度间的介尺度结构(颗粒聚团)的存在会改变气固相间作用规律,显著影响流化性能。本文将固相介尺度应力视为由颗粒聚团引起的附加应力,采用过滤方法,建立介尺度应力与聚团直径和聚团拟温度的关联。采用过滤双流体模型模拟提升管中的气固流动行为,获得了提升管内颗粒聚团的介尺度特性。模拟结果表明:固相应力包括介尺度应力和颗粒尺度应力,且介尺度应力约为颗粒尺度应力的两倍;聚团尺度的脉动强度远低于颗粒尺度;聚团直径在颗粒浓度约为0.05时达到最大值,并随气体速度的增加而增大。
中图分类号:
丁诺, 王淑彦, 邵宝力, 陈曦, 陈华. 提升管内颗粒介尺度流动特性研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251085.
Nuo DING, Shuyan WANG, Baoli SHAO, Xi CHEN, Hua CHEN. Research on mesoscale flow characteristics of particles in a riser[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251085.
| 参数 | 实验 | 模拟 |
|---|---|---|
| 提升管高度(m) | 7.6 | 7.6 |
| 提升管宽(m) | 0.114 | 0.114 |
| 提升管深度(m) | 0.019 | 0.019 |
| 气体密度(kg/m3) | 1.225 | |
| 气体黏度(Pa·s) | 1.78948×10-5 | |
| 气体进口速度(m/s) | 5.0、5.5 | 5.0、5.5 |
| 颗粒密度(kg/m3) | 1877 | 1877 |
| 颗粒直径(m) | 6.7×10-5 | 6.7×10-5 |
| 颗粒入口浓度 | 20% | |
| 颗粒质量流速(kg/m2s) | 100、150、200 | 100、150、200 |
| 恢复系数 | 0.9 |
表1 提升管模拟参数
Table 1 Simulated parameters of riser
| 参数 | 实验 | 模拟 |
|---|---|---|
| 提升管高度(m) | 7.6 | 7.6 |
| 提升管宽(m) | 0.114 | 0.114 |
| 提升管深度(m) | 0.019 | 0.019 |
| 气体密度(kg/m3) | 1.225 | |
| 气体黏度(Pa·s) | 1.78948×10-5 | |
| 气体进口速度(m/s) | 5.0、5.5 | 5.0、5.5 |
| 颗粒密度(kg/m3) | 1877 | 1877 |
| 颗粒直径(m) | 6.7×10-5 | 6.7×10-5 |
| 颗粒入口浓度 | 20% | |
| 颗粒质量流速(kg/m2s) | 100、150、200 | 100、150、200 |
| 恢复系数 | 0.9 |
| 作者 | 关联式 |
|---|---|
| Harris等[ | |
| Gu [ | |
| Subbarao[ |
表2 聚团直径与颗粒浓度的关联式
Table 2 Correlation between cluster diameter and particle volume fraction
| 作者 | 关联式 |
|---|---|
| Harris等[ | |
| Gu [ | |
| Subbarao[ |
| [1] | Zhang H, Huang W X, Zhu J X. Gas-solids flow behavior: CFB riser vs. downer[J]. AIChE Journal, 2001, 47(9): 2000-2011. |
| [2] | 王成秀, 裴华健, 苏鑫, 等. 密相提升管内颗粒速度与颗粒浓度分布及发展特性[J]. 化学反应工程与工艺, 2020, 36(1): 8-16. |
| Wang C X, Pei H J, Su X, et al. Particle velocity and solids holdup characteristics and the flow development in a high density circulating fluidized bed riser[J]. Chemical Reaction Engineering and Technology, 2020, 36(1): 8-16. | |
| [3] | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
| [4] | Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510. |
| [5] | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度: 复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
| Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
| [6] | Manyele S V, Pärssinen J H, Zhu J X. Characterizing particle aggregates in a high-density and high-flux CFB riser[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 151-161. |
| [7] | Cocco R, Shaffer F, Hays R, et al. Particle clusters in and above fluidized beds[J]. Powder Technology, 2010, 203(1): 3-11. |
| [8] | Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571. |
| [9] | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
| [10] | Lu B N, Wang W, Li J H. Eulerian simulation of gas–solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model[J]. Chemical Engineering Science, 2011, 66(20): 4624-4635. |
| [11] | Yin W J, Wang S, Gao G H, et al. A cluster-based drag model of rough sphere for the simulation of fast fluidization[J]. Chemical Engineering Research and Design, 2022, 187: 451-460. |
| [12] | Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111. |
| [13] | Neri A, Gidaspow D. Riser hydrodynamics: Simulation using kinetic theory[J]. AIChE Journal, 2000, 46(1): 52-67. |
| [14] | Lu H L, Gidaspow D, Bouillard J, et al. Hydrodynamic simulation of gas–solid flow in a riser using kinetic theory of granular flow[J]. Chemical Engineering Journal, 2003, 95(1/2/3): 1-13. |
| [15] | Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas–solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185. |
| [16] | Ozel A, Fede P, Simonin O. Development of filtered Euler–Euler two-phase model for circulating fluidised bed: High resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. |
| [17] | Jiradilok V, Gidaspow D, Damronglerd S, et al. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser[J]. Chemical Engineering Science, 2006, 61(17): 5544-5559. |
| [18] | Benyahia S, Sundaresan S. Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models?[J]. Powder Technology, 2012, 220: 2-6. |
| [19] | Li J H, Kwauk M. Particle-fluid Two-phase Flow: the Energy-Minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994. |
| [20] | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
| [21] | Wang W, Li J H. Simulation of gas–solid two-phase flow by a multi-scale CFD approach: of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231. |
| [22] | Jiang Y, Li F, Ge W, et al. EMMS-based solid stress model for the multiphase particle-in-cell method[J]. Powder Technology, 2020, 360: 1377-1387. |
| [23] | He M M, Zhao B D, Wang J W. A unified EMMS-based constitutive law for heterogeneous gas-solid flow in CFB risers[J]. Chemical Engineering Science, 2020, 225: 115797. |
| [24] | Igci Y, Andrews IV A T, Sundaresan S, et al. Filtered two-fluid models for fluidized gas-particle suspensions[J]. AIChE Journal, 2008, 54(6): 1431-1448. |
| [25] | Igci Y, Pannala S, Benyahia S, et al. Validation studies on filtered model equations for gas-particle flows in risers[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 2094-2103. |
| [26] | Milioli C C, Milioli F E. On the subgrid behavior of accelerated riser flows for a high stokes number particulate[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13538-13544. |
| [27] | Sarkar A, Milioli F E, Ozarkar S, et al. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations[J]. Chemical Engineering Science, 2016, 152: 443-456. |
| [28] | Cloete J H, Cloete S, Municchi F, et al. Development and verification of anisotropic drag closures for filtered Two Fluid Models[J]. Chemical Engineering Science, 2018, 192: 930-954. |
| [29] | Xu J, Zhu J X. Experimental study on solids concentration distribution in a two-dimensional circulating fluidized bed[J]. Chemical Engineering Science, 2010, 65(20): 5447-5454. |
| [30] | Wei X Y, Zhu J. Experimental investigation of the instantaneous flow structure in circulating fluidized bed: Phase characterization and validation[J]. Chemical Engineering Science, 2020, 228: 115946. |
| [31] | Schneiderbauer S, Pirker S. Filtered and heterogeneity-based subgrid modifications for gas–solid drag and solid stresses in bubbling fluidized beds[J]. AIChE Journal, 2014, 60(3): 839-854. |
| [32] | Harris A T, Davidson J F, Thorpe R B. The prediction of particle cluster properties in the near wall region of a vertical riser (200157)[J]. Powder Technology, 2002, 127(2): 128-143. |
| [33] | Gu W K, Chen, J C. A model for solid concentration in circulating fluidized beds[C] // Fluidization IX. New York, 1998: 501-508. |
| [34] | Subbarao D. A model for cluster size in risers[J]. Powder Technology, 2010, 199(1): 48-54. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [4] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [5] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [6] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [7] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [8] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [9] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [10] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [11] | 黄正宗, 刘科成, 李泽方, 曾平生, 刘永富, 闫红杰, 刘柳. 锌精馏炉砖砌式换热室数值模拟与场协同优化[J]. 化工学报, 2025, 76(9): 4425-4439. |
| [12] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [13] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [14] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| [15] | 杨开源, 陈锡忠. 颗粒破碎的离散元及有限离散元模拟方法比较[J]. 化工学报, 2025, 76(9): 4398-4411. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号