• •
王宁1(
), 鲁家荣2, 刘一航2, 温家鹏2, 杜丁2, 闫昊2(
), 刘熠斌2, 陈小博2, 杨朝合2
收稿日期:2025-09-02
修回日期:2025-11-11
出版日期:2025-11-18
通讯作者:
闫昊
作者简介:王宁(1992—),男,硕士,工程师,cppewangning@cnpc.com.cn
基金资助:
Ning WANG1(
), Jiarong LU2, Yihang LIU2, Jiapeng WEN2, Ding DU2, Hao YAN2(
), Yibin LIU2, Xiaobo CHEN2, Chaohe YANG2
Received:2025-09-02
Revised:2025-11-11
Online:2025-11-18
Contact:
Hao YAN
摘要:
采用巨正则蒙特卡罗方法(GCMC),研究了变压吸附条件下天然气甲烷、二氧化碳组分在80余种分子筛拓扑结构上的纯组分吸附和竞争吸附情况,获得了饱和吸附量、等量吸附热和吸附选择性等衡量CO2吸附性能的数据。其中FAU拓扑结构具有最高的CO2饱和吸附量,WEI拓扑结构具有最高的CO2吸附选择性。综合分子模拟结果与国际分子筛数据库中260种分子筛结构特征构建了1040组数据的数据库,用于CO2饱和吸附量的预测。采用XGboost、GBR等6种机器学习算法对上述数据库进行训练,其中GBR模型在测试集上表现出最高的决定系数(R2=0.91)和最低的均方误差(MAE=0.34)。采用该模型对剩余分子筛的吸附性能进行预测,发现了CLO、IRT等结构,因其较低的框架密度和较大的可及体积表现出媲美FAU的CO2饱和吸附量,且CO2吸附选择性远高于FAU。
中图分类号:
王宁, 鲁家荣, 刘一航, 温家鹏, 杜丁, 闫昊, 刘熠斌, 陈小博, 杨朝合. 机器学习辅助快速筛选高性能CO2吸附分子筛[J]. 化工学报, DOI: 10.11949/0438-1157.20250983.
Ning WANG, Jiarong LU, Yihang LIU, Jiapeng WEN, Ding DU, Hao YAN, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Machine learning-assisted high-throughput screening of high-performance zeolites for CO2 adsorption[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250983.
| 标签 | 来源 | 含义 | 单位 |
|---|---|---|---|
| FD-Si | IZA | 框架密度 | T/1000Å3 |
| TD | IZA | 拓扑密度 | / |
| TD10 | IZA | 配位序列10层拓扑密度 | / |
| Channel | IZA | 沸石孔道维度 | / |
| MSi | IZA | 沸石最大包容球体直径 | Å |
| MSDa | IZA | 沿a轴方向最大球体直径 | Å |
| MSDb | IZA | 沿b轴方向最大球体直径 | Å |
| MSDc | IZA | 沿c轴方向最大球体直径 | Å |
| PSmax | IZA | 沿三维方向最大球体直径 | Å |
| PSmin | IZA | 沿三维方向最小球体直径 | Å |
| AV | IZA | 有效体积 | % |
| CO2ads | MS2018 | 纯组分CO2饱和吸附量 | mmol/g |
| CO2sel | MS2018 | CO2吸附选择性 | / |
表1 天然气脱酸体系高性能CO2吸附拓扑结构机器学习预测特征标签
Table 1 Feature labels for prediction of high-performance CO2 adsorption topologies in natural gas deacidification systems
| 标签 | 来源 | 含义 | 单位 |
|---|---|---|---|
| FD-Si | IZA | 框架密度 | T/1000Å3 |
| TD | IZA | 拓扑密度 | / |
| TD10 | IZA | 配位序列10层拓扑密度 | / |
| Channel | IZA | 沸石孔道维度 | / |
| MSi | IZA | 沸石最大包容球体直径 | Å |
| MSDa | IZA | 沿a轴方向最大球体直径 | Å |
| MSDb | IZA | 沿b轴方向最大球体直径 | Å |
| MSDc | IZA | 沿c轴方向最大球体直径 | Å |
| PSmax | IZA | 沿三维方向最大球体直径 | Å |
| PSmin | IZA | 沿三维方向最小球体直径 | Å |
| AV | IZA | 有效体积 | % |
| CO2ads | MS2018 | 纯组分CO2饱和吸附量 | mmol/g |
| CO2sel | MS2018 | CO2吸附选择性 | / |
图6 六种种机器学习模型对CO2饱和吸附量预测效果,包括平均绝对误差MAE和测试集决定系数R2
Fig.6 Prediction performance of six machine learning models for CO2 saturation uptake: MAE and test set R²
| 机器学习算法 | 最优参数 | 预测效果 |
|---|---|---|
极致梯度提升 (Xgboost) | n_estimators = 300, max_depth = 5 learning_rate = 0.1, subsample = 0.8 colsample_bytree = 0.8 | MAECO2ads = 0.49 R2CO2ads = 0.84 |
梯度提升回归 (Gradient boost) | n_estimators = 200, max_depth = 3 learning_rate = 0.3, subsample = 0.8 | MAECO2ads = 0.34 R2CO2ads = 0.91 |
随机森林回归 (Random forest) | n_estimators = 150, max_depth = 10 min_samples_split = 2, min_samples_leaf = 1 | MAECO2ads = 0.48 R2CO2ads = 0.86 |
弹性网络回归 (Elastic net) | alpha = 0.1, l1_ratio = 0.1, max_iter = 1000 | MAECO2ads = 0.43 R2CO2ads = 0.85 |
岭回归 (Ridge) | alpha = 10, solver = sparse_cg | MAECO2ads = 0.43 R2CO2ads = 0.85 |
多层感知机回归 (MLP) | Activation = relu, alpha = 0.1, hidden_layer_sizes = (50,50,50), learning_rate = constant, solver = lbfgs | MAECO2ads = 0.56 R2CO2ads = 0.75 |
表2 六种机器学习模型预测效果及最优超参数
Table 2 Prediction performance and optimal hyperparameters of six machine learning models
| 机器学习算法 | 最优参数 | 预测效果 |
|---|---|---|
极致梯度提升 (Xgboost) | n_estimators = 300, max_depth = 5 learning_rate = 0.1, subsample = 0.8 colsample_bytree = 0.8 | MAECO2ads = 0.49 R2CO2ads = 0.84 |
梯度提升回归 (Gradient boost) | n_estimators = 200, max_depth = 3 learning_rate = 0.3, subsample = 0.8 | MAECO2ads = 0.34 R2CO2ads = 0.91 |
随机森林回归 (Random forest) | n_estimators = 150, max_depth = 10 min_samples_split = 2, min_samples_leaf = 1 | MAECO2ads = 0.48 R2CO2ads = 0.86 |
弹性网络回归 (Elastic net) | alpha = 0.1, l1_ratio = 0.1, max_iter = 1000 | MAECO2ads = 0.43 R2CO2ads = 0.85 |
岭回归 (Ridge) | alpha = 10, solver = sparse_cg | MAECO2ads = 0.43 R2CO2ads = 0.85 |
多层感知机回归 (MLP) | Activation = relu, alpha = 0.1, hidden_layer_sizes = (50,50,50), learning_rate = constant, solver = lbfgs | MAECO2ads = 0.56 R2CO2ads = 0.75 |
| [1] | 张强. "双碳"背景下我国化石能源的影响分析[J]. 现代工业经济和信息化, 2025, 15(6): 32-33, 40. |
| Zhang Q. Impact analysis of China's fossil energy in the context of "dual carbon"[J]. Modern Industrial Economy and Informationization, 2025, 15(6): 32-33, 40. | |
| [2] | 余晓钟, 杜全燕, 章阐引, 等. 能源转型背景下天然气储运高质量发展路径[J]. 天然气技术与经济, 2024, 18(6): 1-6. |
| Yu X Z, Du Q Y, Zhang C Y, et al. The path to high-quality development of natural-gas storage and transportation in the context of energy transition[J]. Natural Gas Technology and Economy, 2024, 18(6): 1-6. | |
| [3] | 刘帅. "双碳"目标下天然气发电与新能源融合产业碳减排技术路径[J]. 油气与新能源, 2025, 37(4): 83-88. |
| Liu S. Carbon reduction technology pathways for natural gas power generation and new energy integration under the "dual carbon" goals[J]. Petroleum and New Energy, 2025, 37(4): 83-88. | |
| [4] | 田望. 油气储运企业碳管理现状及体系构建[J]. 石油学报(石油加工), 2025, 41(5): 1224-1230. |
| Tian W. Current status and system construction of carbon management in oil and gas storage and transportation enterprises[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2025, 41(5): 1224-1230. | |
| [5] | 李海芹. 天然气处理厂脱酸过程的控制联锁方案设计[J]. 山东化工, 2025, 54(6): 211-214, 217. |
| Li H Q. Design of control interlock scheme for deacidification process in natural gas processing plant[J]. Shandong Chemical Industry, 2025, 54(6): 211-214, 217. | |
| [6] | 刘露, 段振红, 贺高红. 天然气脱除CO2方法的比较与进展[J]. 化工进展, 2009, 28(S1): 290-292. |
| Liu L, Duan Z H, He G H. Comparison and progress of methods for removing CO2 from natural gas[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 290-292. | |
| [7] | 洪宗平, 叶楚梅, 吴洪, 等. 天然气脱碳技术研究进展[J]. 化工学报, 2021, 72(12): 6030-6048. |
| Hong Z P, Ye C M, Wu H, et al. Research progress in CO2 removal technology of natural gas[J]. CIESC Journal, 2021, 72(12): 6030-6048. | |
| [8] | 王春燕, 杨莉娜, 王念榕, 等. 变压吸附技术在天然气脱除CO2上的应用探讨[J]. 石油规划设计, 2013, 25(1): 52-55. |
| Wang C Y, Yang L N, Wang N R, et al. Discussion on application of pressure swing adsorption technology in CO2 removal from natural gas[J]. Petroleum Planning & Engineering, 2013, 25(1): 52-55. | |
| [9] | 刘宝林. 低温变压吸附脱除天然气中二氧化碳实验研究[D]. 大连: 大连理工大学, 2015. |
| Liu B L. Experimental study of low-temperature and pressure swing adsorption removal carbon dioxide gas from natural gas[D]. Dalian: Dalian University of Technology, 2015. | |
| [10] | 赖丹. 一维超微孔MOFs材料孔径调控与CO2/CH4吸附动力学研究[D]. 杭州: 浙江大学, 2021. |
| Lai D. Engineering the pore size of ultra-microporous MOFs for kinetical separation of CO2/CH4 [D]. Hangzhou: Zhejiang University, 2021. | |
| [11] | Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: state of the art and future prospects[J]. Chemical Reviews, 2022, 122(24): 17647-17695. |
| [12] | Li Y, Yu J H. Emerging applications of zeolites in catalysis, separation and host–guest assembly[J]. Nature Reviews Materials, 2021, 6(12): 1156-1174. |
| [13] | 赵新红, 王浩, 丁梦琦, 等. 不同合成路线耦合制备沸石分子筛[J]. 化学进展, 2024, 36(4): 525-536. |
| Zhao X H, Wang H, Ding M Q, et al. Coupling different synthesis routes to prepare zeolite molecular sieves[J]. Progress in Chemistry, 2024, 36(4): 525-536. | |
| [14] | 郭彭涛, 王婷, 薛波, 等. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| Guo P T, Wang T, Xue B, et al. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation[J]. CIESC Journal, 2025, 76(5): 2304-2312. | |
| [15] | 张霄, 董毅, 林赛赛, 等. 机器学习加速能源环境催化材料的创新研究[J]. 能源环境保护, 2023, 37(3): 1-12. |
| Zhang X, Dong Y, Lin S S, et al. Machine learning accelerating innovative researches on energy and environmental catalysts[J]. Energy Environmental Protection, 2023, 37(3): 1-12. | |
| [16] | 周印洁, 吉思蓓, 何松阳, 等. 机器学习辅助高通量筛选金属有机骨架用于富碳天然气中分离CO2 [J]. 化工学报, 2025, 76(3): 1093-1101. |
| Zhou Y J, Ji S B, He S Y, et al. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks[J]. CIESC Journal, 2025, 76(3): 1093-1101. | |
| [17] | 黄晓珊, 关雅芳, 李惠琳, 等. 机器学习辅助筛选MOFs缓蚀剂载体及其吸附性能预测[J]. 电镀与涂饰, 2025, 44(6): 110-117. |
| Huang X S, Guan Y F, Li H L, et al. Machine learning-assisted screening of MOF carriers for corrosion inhibitors and their adsorption performance prediction[J]. Electroplating & Finishing, 2025, 44(6): 110-117. | |
| [18] | Wanyonyi F S, Fidelis T T, Mutua G K, et al. Role of pore chemistry and topology in the heavy metal sorption by zeolites: From molecular simulation to machine learning[J]. Computational Materials Science, 2021, 195: 110519. |
| [19] | 陈佳丽, 赵国祥, 颜亚玉, 等. 机器学习探究电子气体在沸石分子筛上的吸附[J]. 无机化学学报, 2025, 41(1): 155-164. |
| Chen J L, Zhao G X, Yan Y Y, et al. Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. | |
| [20] | Chen Y L, Hu W D, Li X, et al. Machine learning prediction of transition-state energies in small-pore zeolites combining acidity and topology descriptors[J]. The Journal of Physical Chemistry C, 2024, 128(9): 3770-3779. |
| [21] | Wang Y, Jiang Z J, Lu W G, et al. Machine learning-assisted exploration of chemical space of MOF-5 analogs for enhanced C2H6/C2H4 separation[J]. Angewandte Chemie International Edition, 2025, 64(21): e202500783. |
| [22] | 汤赛. 沸石分子筛吸附大气中有毒污染物的分子模拟研究[D]. 武汉: 武汉工程大学, 2018. |
| Tang S. Molecular simulation of the adsorption of toxic pollutant in the atmosphere in zeolites[D]. Wuhan: Wuhan Institute of Technology, 2018. | |
| [23] | 王翀, 鲁家荣, 闫昊, 等. NaX分子筛吸附天然气中酸性气的分子模拟[J]. 石油炼制与化工, 2023, 54(9): 41-50. |
| Wang C, Lu J R, Yan H, et al. Molecular simulation of adsorption of acid gas from natural gas in NaX zeolite[J]. Petroleum Processing and Petrochemicals, 2023, 54(9): 41-50. | |
| [24] | Sun H, Jin Z, Yang C W, et al. COMPASS II: extended coverage for polymer and drug-like molecule databases[J]. Journal of Molecular Modeling, 2016, 22(2): 47. |
| [25] | Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
| [26] | Karimi M, Rodrigues A E, Silva J A C. Designing a simple volumetric apparatus for measuring gas adsorption equilibria and kinetics of sorption. Application and validation for CO2, CH4 and N2 adsorption in binder-free beads of 4A zeolite[J]. Chemical Engineering Journal, 2021, 425: 130538. |
| [27] | Cavenati S, Grande C A, Rodrigues A E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1095-1101. |
| [28] | Jedli H, Almoneef M M, Mbarek M, et al. Adsorption of CO2 onto zeolite ZSM-5: Kinetic, equilibrium and thermodynamic studies[J]. Fuel, 2022, 321: 124097. |
| [29] | Sastre G, Corma A. The confinement effect in zeolites[J]. Journal of Molecular Catalysis A: Chemical, 2009, 305(1/2): 3-7. |
| [30] | 郭强, 肇启东, 肖永厚. 双回流变压吸附高效分离CO/H2制备高纯H2和CO[J]. 化工学报, 2024, 75(11): 4298-4308. |
| Guo Q, Zhao Q D, Xiao Y H. Preparation of high-purity H2 and CO by efficient separation of CO/H2 using dual-reflux pressure swing adsorption process[J]. CIESC Journal, 2024, 75(11): 4298-4308. | |
| [31] | 彭晨曦. NaY型分子筛脱除高炉煤气中H2S时COS的生成行为研究[D]. 太原: 太原理工大学, 2024. |
| Peng C X. Study on COS formation behavior in removal of H2S from blast furnace gas by NaY molecular sieve[D]. Taiyuan: Taiyuan University of Technology, 2024. | |
| [32] | Lin Q F, Gao Z R, Lin C, et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores[J]. Science, 2021, 374(6575): 1605-1608. |
| [33] | Ma C, Zhang Z H, Zhang M D, et al. Accelerated discovery of stable, extra-large-pore nano zeolites with micro-electron diffraction[J]. Science, 2025, 388(6754): 1417-1421. |
| [34] | Wang N N, Dang G L, Bai Z W, et al. In situ synthesis of cation-free zirconia-supported zeolite CHA membranes for efficient CO2/CH4 separation[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16853-16864. |
| [35] | 孙永彪, 唐建峰, 刘鑫博, 等. 基于动态吸附的X型沸石对CO2/CH4分离性能实验[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 160-167. |
| Sun Y B, Tang J F, Liu X B, et al. Experiment on effect of X type zeolites on separation of CO2/CH4 mixture based on dynamic adsorption[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(4): 160-167. | |
| [36] | Zhang M J, Qian W X, Ma H F, et al. A theoretical study on the separation of CO2/CH4 through MFI zeolite[J]. Computational and Theoretical Chemistry, 2023, 1228: 114272. |
| [37] | 刘明, 徐若涵, 王浩男, 等. 斜发沸石在不同晶化阶段的微观结构和分形特征及其对CO2和CH4的吸附性能[J]. 北京工业大学学报, 2025, 51(11): 1374-1384. |
| Liu M, Xu R H, Wang H N, et al. Microstructures and fractal characteristics of clinoptilolite synthesized at various crystallization stages for adsorption properties for CO2 and CH4 [J]. Journal of Beijing University of Technology, 2025, 51(11): 1374-1384. | |
| [38] | 董晓莹, 周扬, 宁跃文, 等. 生物模板法制备SAPO-34分子筛及其对CO2/CH4吸附分离性能的研究[J]. 现代化工, 2022, 42(8): 128-133. |
| Dong X Y, Zhou Y, Ning Y W, et al. Preparation of SAPO-34 molecular sieve by biological template method and its application in CO2/CH4 adsorption separation[J]. Modern Chemical Industry, 2022, 42(8): 128-133. | |
| [39] | Lei J, Zhong Z L, Yuan W Y, et al. Development of heterometallic annular tetranuclear clusters in metal–organic frameworks for methane purification and storage[J]. Chem & Bio Engineering, 2024, 1(9): 773-782. |
| [40] | Liu X, Wang H, Liu C, et al. Recent advances of multidentate ligand-based anion-pillared MOFs for enhanced separation and purification processes[J]. Chem & Bio Engineering, 2024, 1(6): 469-487. |
| [1] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [2] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [3] | 马爱华, 赵帅, 王林, 常明慧. 太阳能吸收制冷循环动态特性仿真方法研究[J]. 化工学报, 2025, 76(S1): 318-325. |
| [4] | 黄琮琪, 邵双全. 液冷数据中心余热驱动的压缩-吸收式制冷系统特性研究[J]. 化工学报, 2025, 76(S1): 326-335. |
| [5] | 吕龙义, 唐明磊, 郝鹏, 吴旻昊, 高文芳, 张光明. 导电材料强化高固厌氧消化性能及机制研究进展[J]. 化工学报, 2025, 76(9): 4737-4751. |
| [6] | 胡国祥, 朱忆魁, 龙华, 刘晓雯, 熊勤钢. 组分配比影响氯化胆碱-乳酸低共熔溶剂碱木质素溶解度的底层机理研究[J]. 化工学报, 2025, 76(9): 4449-4461. |
| [7] | 李雪雯, 王治红, 高阳, 吴明鸥, 马文皓, 谭仁敏. 基于热泵技术的醇胺法脱硫再生系统多目标优化研究[J]. 化工学报, 2025, 76(9): 4563-4577. |
| [8] | 李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562. |
| [9] | 钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849. |
| [10] | 陈治宏, 吴佳伟, 楼小玲, 贠军贤. 化学品生物制造过程机器学习的研究进展[J]. 化工学报, 2025, 76(8): 3789-3804. |
| [11] | 高正, 汪辉, 屈治国. 数据驱动辅助高通量筛选阴离子柱撑金属有机框架储氢[J]. 化工学报, 2025, 76(8): 4259-4272. |
| [12] | 周媚, 曾浩桀, 蒋火炎, 蒲婷, 曾星星, 刘宝玉. 二次晶化法改性合成MTW分子筛及其在苯和环己烯烷基化反应中的催化性能[J]. 化工学报, 2025, 76(8): 4071-4080. |
| [13] | 林嘉豪, 付芳忠, 叶昊辉, 胡金, 姚明灿, 范鹤林, 王旭, 王瑞祥, 徐志峰. NdF3含量对NdF3-LiF熔盐局域结构和输运性质的影响[J]. 化工学报, 2025, 76(8): 3834-3841. |
| [14] | 王小令, 王绍清, 赵云刚, 常方哲, 穆瑞峰. 基于ReaxFF MD模拟的煤加氢热解有机Ca转化机制研究[J]. 化工学报, 2025, 76(8): 4297-4309. |
| [15] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号