化工学报

• •    

机器学习辅助快速筛选高性能CO2吸附分子筛

王宁1(), 鲁家荣2, 刘一航2, 温家鹏2, 杜丁2, 闫昊2(), 刘熠斌2, 陈小博2, 杨朝合2   

  1. 1.中国石油天然气管道工程有限公司,河北 廊坊 065000
    2.中国石油大学(华东)重质油国家重点实验室,山东 青岛 266580
  • 收稿日期:2025-09-02 修回日期:2025-11-11 出版日期:2025-11-18
  • 通讯作者: 闫昊
  • 作者简介:王宁(1992—),男,硕士,工程师,cppewangning@cnpc.com.cn
  • 基金资助:
    国家自然科学基金青年基金项目(22108305);山东省自然科学基金优秀青年基金项目(ZR2023YQ009)

Machine learning-assisted high-throughput screening of high-performance zeolites for CO2 adsorption

Ning WANG1(), Jiarong LU2, Yihang LIU2, Jiapeng WEN2, Ding DU2, Hao YAN2(), Yibin LIU2, Xiaobo CHEN2, Chaohe YANG2   

  1. 1.China Petroleum Pipeline Engineering Corporation, Langfang 065000, Hebei, China
    2.State Key Laboratory of Heavy Oil Processing,China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2025-09-02 Revised:2025-11-11 Online:2025-11-18
  • Contact: Hao YAN

摘要:

采用巨正则蒙特卡罗方法(GCMC),研究了变压吸附条件下天然气甲烷、二氧化碳组分在80余种分子筛拓扑结构上的纯组分吸附和竞争吸附情况,获得了饱和吸附量、等量吸附热和吸附选择性等衡量CO2吸附性能的数据。其中FAU拓扑结构具有最高的CO2饱和吸附量,WEI拓扑结构具有最高的CO2吸附选择性。综合分子模拟结果与国际分子筛数据库中260种分子筛结构特征构建了1040组数据的数据库,用于CO2饱和吸附量的预测。采用XGboost、GBR等6种机器学习算法对上述数据库进行训练,其中GBR模型在测试集上表现出最高的决定系数(R2=0.91)和最低的均方误差(MAE=0.34)。采用该模型对剩余分子筛的吸附性能进行预测,发现了CLO、IRT等结构,因其较低的框架密度和较大的可及体积表现出媲美FAU的CO2饱和吸附量,且CO2吸附选择性远高于FAU。

关键词: 天然气, 分子筛, 吸收, 分子模拟, 机器学习

Abstract:

Grand Canonical Monte Carlo (GCMC) simulations were employed to investigate both pure-component and competitive adsorption of methane and carbon dioxide mixtures under pressure swing adsorption conditions across more than 80 types of zeolite topologies. Key performance metrics such as saturated CO₂ adsorption capacity, isosteric heat of adsorption, and adsorption selectivity were obtained. Among the topologies studied, FAU exhibited the highest saturated CO₂ adsorption capacity, while WEI showed the highest CO₂ adsorption selectivity. A database containing 1,040 data entries was constructed by integrating the molecular simulation results with structural features of over 260 zeolites from the International Zeolite Association database. Six machine learning algorithms, including XGBoost and Gradient Boosting Regression (GBR), were trained on this dataset to predict saturated CO₂ adsorption capacity. The GBR model demonstrated the highest performance on the test set, with a coefficient of determination (R²) of 0.91 and a mean absolute error (MAE) of 0.34. This model was subsequently applied to predict the CO₂ adsorption performance across all topological zeolite structures. Novel topologies such as CLO and IRT were identified, which due to their low framework density and large pore size, exhibited saturated CO₂ adsorption capacities comparable to FAU, along with significantly higher CO₂ adsorption selectivity.

Key words: natural gas, molecular sieves, adsorption, molecular simulation, machine learning

中图分类号: