化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 326-335.DOI: 10.11949/0438-1157.20241378
• 能源和环境工程 • 上一篇
收稿日期:2024-12-02
修回日期:2024-12-13
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
邵双全
作者简介:黄琮琪(1999—),男,硕士研究生,948146937@qq.com
基金资助:
Congqi HUANG(
), Shuangquan SHAO(
)
Received:2024-12-02
Revised:2024-12-13
Online:2025-06-25
Published:2025-06-26
Contact:
Shuangquan SHAO
摘要:
余热回收是优化数据中心能耗结构与节能降碳的重要解决方案。构建了液冷数据中心余热驱动的压缩-吸收式制冷系统模型,探究了供给侧热源温度、冷却水温度等参数对系统制冷性能的影响,研究不同冷却条件下提供性能补偿的压缩比-冷却水温度协调方式,结合北京地区的全年气候特征分析了典型服务器在不同散热功率的余热驱动制冷性能。研究得出供给侧热源温度升高使得性能提升,压缩比从1.2增至1.8时冷却水温度范围拓宽6.5~8.7℃;在过渡季或冬季,良好的自然冷源条件可以实现高效的自然冷却或单效吸收式制冷;气温处于平均值的阶段,仅消耗少量压缩电功即可实现高效制冷,而在极端炎热气候下,需要消耗相当于余热量15%~20%的压缩电功以维持高效制冷。
中图分类号:
黄琮琪, 邵双全. 液冷数据中心余热驱动的压缩-吸收式制冷系统特性研究[J]. 化工学报, 2025, 76(S1): 326-335.
Congqi HUANG, Shuangquan SHAO. Research on characteristics of compression-absorption refrigeration system driven by waste heat in liquid-cooled data center[J]. CIESC Journal, 2025, 76(S1): 326-335.
| 部件 | 能量守恒关系式 |
|---|---|
| 蒸发器 | |
| 吸收器 | |
| 溶液换热器 | |
| 发生器 | |
| 压缩机 | |
| 冷凝器 | |
| 回热器 | |
| 溶液泵 | |
| 节流阀 |
表1 系统部件的能量守恒关系式
Table 1 Energy conservation of system components
| 部件 | 能量守恒关系式 |
|---|---|
| 蒸发器 | |
| 吸收器 | |
| 溶液换热器 | |
| 发生器 | |
| 压缩机 | |
| 冷凝器 | |
| 回热器 | |
| 溶液泵 | |
| 节流阀 |
| 工质 | 工况参数 | 状态点 | 设计值 |
|---|---|---|---|
| 冷却液 | 输入温度/℃ | tH1 | 60.00 |
| 输出温度/℃ | tH2 | 56.00 | |
| 空调冷水 | 输入温度/℃ | tF1 | 18.00 |
| 输出温度/℃ | tF2 | 12.00 | |
| 溶液 | 发生器温度/℃ | t7 | 53.00 |
| 吸收器温度/℃ | t4 | 32.00 | |
| 溶液换热器效率 | ηexc | 0.80 | |
| 制冷剂 | 蒸发温度/℃ | t1 | 10.00 |
| 冷凝温度/℃ | t3 | 32.00 | |
| 压缩机压缩比 | CR | 1.60 | |
| 压缩机等熵效率 | ηi | 0.70 | |
| 压缩机电效率 | ηe | 0.38 | |
| 冷却水 | 输入温度/℃ | tC1 | 24.00 |
| 吸收器温差/℃ | tabs,C2 - tC1 | 5.00 | |
| 冷凝器温差/℃ | tcon,C2 - tC1 | 5.00 |
表2 额定工况参数设定
Table 2 Parameters in rated operating condition
| 工质 | 工况参数 | 状态点 | 设计值 |
|---|---|---|---|
| 冷却液 | 输入温度/℃ | tH1 | 60.00 |
| 输出温度/℃ | tH2 | 56.00 | |
| 空调冷水 | 输入温度/℃ | tF1 | 18.00 |
| 输出温度/℃ | tF2 | 12.00 | |
| 溶液 | 发生器温度/℃ | t7 | 53.00 |
| 吸收器温度/℃ | t4 | 32.00 | |
| 溶液换热器效率 | ηexc | 0.80 | |
| 制冷剂 | 蒸发温度/℃ | t1 | 10.00 |
| 冷凝温度/℃ | t3 | 32.00 | |
| 压缩机压缩比 | CR | 1.60 | |
| 压缩机等熵效率 | ηi | 0.70 | |
| 压缩机电效率 | ηe | 0.38 | |
| 冷却水 | 输入温度/℃ | tC1 | 24.00 |
| 吸收器温差/℃ | tabs,C2 - tC1 | 5.00 | |
| 冷凝器温差/℃ | tcon,C2 - tC1 | 5.00 |
| 1 | 骆清怡, 王长宏. 数据中心多尺度热管理策略综述[J]. 制冷技术, 2021, 41(3): 1-11. |
| Luo Q Y, Wang C H. Review of multi-scale thermal management strategy in data center[J]. Chinese Journal of Refrigeration Technology, 2021, 41(3): 1-11. | |
| 2 | Zhou F, Song Y, Ma G Y. Load characteristics analysis of the water source heat pump heating system using data center waste heat[J]. Energy Conversion and Management, 2023, 296: 117679. |
| 3 | Zhang C Q, Luo H X, Wang Z X. An economic analysis of waste heat recovery and utilization in data centers considering environmental benefits[J]. Sustainable Production and Consumption, 2022, 31: 127-138. |
| 4 | 黄一晟, 陈健勇, 罗向龙, 等. 用于余热回收利用的有机朗肯循环与高温热泵对比研究[J]. 制冷技术, 2023, 43(4): 79-85. |
| Huang Y S, Chen J Y, Luo X L, et al. Comparative study on organic Rankine cycle and high temperature heat pump for waste heat recovery and utilization[J]. Chinese Journal of Refrigeration Technology, 2023, 43(4): 79-85. | |
| 5 | Pan Q W, Peng J J, Wang R Z. Application analysis of adsorption refrigeration system for solar and data center waste heat utilization[J]. Energy Conversion and Management, 2021, 228: 113564. |
| 6 | Ebrahimi K, Jones G F, Fleischer A S. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration[J]. Applied Energy, 2015, 139: 384-397. |
| 7 | Chen H, Peng Y H, Wang Y L. Thermodynamic analysis of hybrid cooling system integrated with waste heat reusing and peak load shifting for data center[J]. Energy Conversion and Management, 2019, 183: 427-439. |
| 8 | Wu W. Low-temperature compression-assisted absorption thermal energy storage using ionic liquids[J]. Energy and Built Environment, 2020, 1(2): 139-148. |
| 9 | Takalkar G D, Bhosale R R, Mali N A, et al. Thermodynamic analysis of EMISE-water as a working pair for absorption refrigeration system[J]. Applied Thermal Engineering, 2019, 148: 787-795. |
| 10 | Sujatha I, Venkatarathnam G. Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF 2N] as the absorbent[J]. International Journal of Refrigeration, 2018, 88: 370-382. |
| 11 | Asensio-Delgado J M, Asensio-Delgado S, Zarca G, et al. Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working pairs[J]. International Journal of Refrigeration, 2022, 134: 232-241. |
| 12 | 徐敬玉. 基于烟气处理一体化的开式吸收热泵技术及应用研究[J]. 制冷技术, 2022, 42(3): 62-67. |
| Xu J Y. Research on open absorption heat pump technology and application based on collaborative treatment of flue gas[J]. Chinese Journal of Refrigeration Technology, 2022, 42(3): 62-67. | |
| 13 | 匡胜严, 侯俊杰, 谢吉平, 等. 太阳能溴化锂吸收式热泵应用分析[J]. 制冷技术, 2017, 37(6): 72-77. |
| Kuang S Y, Hou J J, Xie J P, et al. Application analysis of solar LiBr absorption heat pump[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 72-77. | |
| 14 | Ji Q, Han Z W, Zhang X P, et al. Study on the heating performance of absorption-compression hybrid heat pump in severe cold regions[J]. Applied Thermal Engineering, 2021, 185: 116419. |
| 15 | Wang J, Wang B L, Li X T, et al. Performance analysis on compression-assisted absorption heat transformer: a new low-temperature heating system with higher heating capacity under lower ambient temperature[J]. Applied Thermal Engineering, 2018, 134: 419-427. |
| 16 | Ji Q, Yin Y G, Wang Y K, et al. Comparative analysis of compression-absorption cascade heat pump using various ionic liquid-based working pairs[J]. Energy Conversion and Management, 2022, 269: 116084. |
| 17 | Guo Y H, Shao S Q, Geng X D, et al. A data-driven evaluating method on the defrosting effect of the air source heat pump system in Beijing[J]. Applied Thermal Engineering, 2023, 235: 121377. |
| 18 | Huicochea A. A novel advanced absorption heat pump (type Ⅲ) for cooling and heating using low-grade waste heat[J]. Energy, 2023, 278: 127938. |
| 19 | Wu W, Leung M, Ding Z X, et al. Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles[J]. Applied Thermal Engineering, 2020, 172: 115145. |
| 20 | Gupta R, Puri I K. Waste heat recovery in a data center with an adsorption chiller: technical and economic analysis[J]. Energy Conversion and Management, 2021, 245: 114576. |
| 21 | Kansal A, Zhao F, Liu J, et al. Virtual Machine Power Metering and Provisioning[C]//Proceedings of the 1st ACM Symposium on Cloud computing. ACM, 2010. |
| 22 | Huang P, Copertaro B, Zhang X X, et al. A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258: 114109. |
| 23 | Zhang X, Cai L, Chen T, et al. Performance analysis of a novel compression-assisted absorption power and refrigeration system with selected 1,1-difluoroethane/ionic liquid[J]. Journal of Cleaner Production, 2022, 340: 130856. |
| 24 | Zhang X, Wang R Z, Xu Z Y. Air-source hybrid absorption-compression heat pumps with three-stage thermal coupling configuration for temperature lift over 150℃[J]. Energy Conversion and Management, 2022, 271: 116304. |
| 25 | Ji Q, Wang Y K, Yin Y G, et al. Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair[J]. Energy, 2023, 278: 128018. |
| 26 | Dai B M, Yang H N, Liu S C, et al. Hybrid solar energy and waste heat driving absorption subcooling supermarket CO2 refrigeration system: energetic, carbon emission and economic evaluation in China[J]. Solar Energy, 2022, 247: 123-145. |
| 27 | Wahlroos M, Pärssinen M, Rinne S, et al. Future views on waste heat utilization—case of data centers in Northern Europe[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1749-1764. |
| 28 | 颜晓光. 冷却塔间接供冷系统在数据中心的应用研究[J]. 制冷与空调(四川), 2022, 36(5): 693-700. |
| Yan X G. Application analysis of indirect cooling system of cooling tower in data center[J]. Refrigeration & Air Conditioning, 2022, 36(5): 693-700. | |
| 29 | 杨毅, 任华华, 郝海仙. 数据中心冷却塔供冷应用分析[J]. 建筑热能通风空调, 2014, 33(1): 80-82. |
| Yang Y, Ren H H, Hao H X. The application analysis of cooling tower free cooling for data center[J]. Building Energy & Environment, 2014, 33(1): 80-82. | |
| 30 | Huang Q H, Shao S Q, Zhang H N, et al. Development and composition of a data center heat recovery system and evaluation of annual operation performance[J]. Energy, 2019, 189: 116200. |
| [1] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [2] | 周昉, 刘剑, 张小松. 基于多参数评估原则筛选高温热泵用三元非共沸混合工质[J]. 化工学报, 2023, 74(11): 4487-4500. |
| [3] | 贺巍, 曹永娜, 尚宏儒, 李崯雪, 郭超, 于艳玲. 生物质发酵余热回收系统优化设计与性能分析[J]. 化工学报, 2023, 74(10): 4302-4310. |
| [4] | 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355. |
| [5] | 荣杨一鸣, 吴巧仙, 周霞, 方松, 王凯, 邱利民, 植晓琴. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
| [6] | 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244. |
| [7] | 李艺群, 罗春欢, 李娜, 苏庆泉. 基于吸收式制冷循环的CaCl2-LiCl/H2O工质对研究[J]. 化工学报, 2019, 70(9): 3483-3494. |
| [8] | 侯中兰, 魏新利, 马新灵, 孟祥睿. 循环水流量对ORC余热发电系统性能影响的试验分析[J]. 化工学报, 2019, 70(9): 3283-3290. |
| [9] | 曹语, 王乐, 季超, 黄延召, 薛志磊, 陆剑鸣, 漆虹. 陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J]. 化工学报, 2019, 70(6): 2192-2201. |
| [10] | 余伟, 王辉涛, 王建军, 朱道飞, 陶帅, 葛众, 黄靖伦, 赵玲玲. 基于热力学第二定律的ORC蒸气发生器性能优化[J]. 化工学报, 2019, 70(11): 4238-4246. |
| [11] | 孙艳军, 邸高雷, 夏娟, 王晓坡, 金立文. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69(S2): 38-44. |
| [12] | 王路瑶, 吴斌, 杜志敏, 晋欣桥. 基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J]. 化工学报, 2018, 69(S2): 252-259. |
| [13] | 孟庆莹, 曹语, 黄延召, 王乐, 李丽, 牛淑锋, 漆虹. 过程参数对采用多孔陶瓷超滤膜回收烟气中余热和水性能的影响[J]. 化工学报, 2018, 69(6): 2519-2525. |
| [14] | 田华, 井东湛, 王轩, 刘鹏, 喻志刚. 基于内燃机余热回收联产系统变工况特性分析[J]. 化工学报, 2018, 69(2): 792-800. |
| [15] | 柴俊霖, 田瑞, 杨富斌, 张红光. 车用柴油机余热回收有机朗肯循环系统方案热经济性对比分析[J]. 化工学报, 2017, 68(8): 3258-3265. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号