化工学报

• •    

混合稠环芳烃加氢饱和催化剂设计策略及研究进展

齐皓烨1,2(), 田涛1,2, 荆洁颖1,2,3,4(), 李文英1,2,3,4   

  1. 1.太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
    2.太原理工大学化学与化工学院,山西 太原 030024
    3.北京怀柔实验室,北京市 怀柔区 101499
    4.怀柔实验室山西研究院,山西 太原 030032
  • 收稿日期:2025-11-06 修回日期:2025-12-22 出版日期:2026-01-05
  • 通讯作者: 荆洁颖
  • 作者简介:齐皓烨(2002—),男,硕士研究生,2024521016@link.tyut.edu.cn
  • 基金资助:
    国家自然科学基金(U24B6018);国家自然科学基金(22038008);怀柔实验室项目(ZD2023012A)

Catalyst design strategies and research progress for hydrogenation saturation of mixed polycyclic aromatic hydrocarbons

Haoye QI1,2(), Tao TIAN1,2, Jieying JING1,2,3,4(), Wenying LI1,2,3,4   

  1. 1.State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    3.Beijing Huairou Laboratory, Beijing Huairou District 101499, China
    4.Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, Shanxi, China
  • Received:2025-11-06 Revised:2025-12-22 Online:2026-01-05
  • Contact: Jieying JING

摘要:

将煤焦油中的稠环芳烃催化加氢转化为高能量密度燃料是实现煤炭资源清洁高效利用的重要路径。然而,混合稠环芳烃在催化剂表面存在竞争吸附与动态演变行为,导致其高效转化面临挑战。因此,阐明混合体系中稠环芳烃间相互作用及其对加氢饱和过程的影响机制是开发高效催化剂的关键。本文系统综述了由竞争吸附和反应路径动态演变所引发的催化加氢难题,总结了针对这些问题的催化剂设计与调控策略,主要包括优化活性中心结构以缓解竞争吸附导致的局部反应环境偏离;调控载体性质以引导因反应路径动态变化而偏离的目标反应;构建开放的分级孔道结构并进行表面功能化修饰以改善大分子传质效率并抑制积碳失活,并对混合稠环芳烃加氢饱和催化剂的未来研究方向进行了展望。

关键词: 燃料, 稠环芳烃, 多相反应, 加氢饱和, 竞争吸附, 动态演变, 催化剂

Abstract:

The catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) from coal tar into high energy density fuels represents a crucial route for the clean and efficient utilization of coal resources. However, the efficient conversion of mixed PAHs is hindered by their competitive adsorption and dynamic evolution behavior on catalyst surfaces. A fundamental understanding of the interactions among PAHs in mixtures and their impact on the hydrogenation saturation process is essential for designing high-performance catalysts. This review systematically addresses key catalytic challenges stemming from competitive adsorption and evolving reaction pathways, and summarizes advanced strategies for catalyst design and optimization. These include tailoring active sites to mitigate local environment distortions caused by competitive adsorption, modifying support properties to steer target reactions amid dynamic pathway changes, and constructing open hierarchical pore structures with surface functionalization to enhance mass transfer of large molecules and suppress coke-induced deactivation. The study also presented future research directions for catalysts aimed at the saturation hydrogenation of mixed PAHs.

Key words: fuel, polycyclic aromatic hydrocarbons, multiphase reaction, hydrogenation saturation, competitive adsorption, dynamic evolution, catalyst

中图分类号: