CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2616-2625.DOI: 10.11949/0438-1157.20181334

• Process system engineering • Previous Articles     Next Articles

Fault diagnosis of airflow jamming fault in double circulating fluidized bed based on multi-scale feature energy and KELM

Xin YANG1,2(),Zherui MA2(),Henan SHEN1,Hongwei CHEN2   

  1. 1. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056002, Hebei, China
    2. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Baoding 071000, Hebei, China
  • Received:2018-11-15 Revised:2019-03-18 Online:2019-07-05 Published:2019-07-05
  • Contact: Zherui MA

基于多尺度特征能量-核极限学习机的双循环流化床气流堵塞故障智能诊断

杨新1,2(),麻哲瑞2(),申赫男1,陈鸿伟2   

  1. 1. 河北工程大学水利水电学院,河北 邯郸 056002
    2. 华北电力大学电站设备状态监测与控制教育部重点实验室,河北 保定 071000
  • 通讯作者: 麻哲瑞
  • 作者简介:杨新(1987—),男,博士,讲师,<email>yangxin890322@126.com</email>
  • 基金资助:
    河北省青年基金项目(QN2016204)

Abstract:

In order to alleviate the negative impact of dual circulating fluidized bed agglomeration and plugging failure on biomass gasification reaction, a fault diagnosis model based on multi-scale feature energy-kernel extreme learning machine (KELM) was proposed. Firstly, wavelet decomposition is used to obtain the multi-scale signal in the fault state, then the feature energy of each scale is extracted as the feature vector, and finally input into the nuclear limit learning intelligent diagnosis model optimized by genetic algorithm to realize the intelligent diagnosis of dual circulating fluidized bed airflow blockage faults. Through the classification and analysis of the open bearing fault data set and the dual-circulating fluidized bed cold experimental system data, and compared with the KELM diagnostic model based on variational mode decomposition and sample entropy feature extraction, the results show that the model has higher fault diagnosis accuracy (82.5%), which can effectively extract fault characteristics and be used for efficient classification and identification of dual circulating fluidized bed airflow blockage.

Key words: fault diagnosis, circulating fluidized bed, multiscale, genetic algorithm, kernel extreme learning machine

摘要:

为减轻双循环流化床结块与堵塞故障对生物质气化反应的负面影响,提出基于多尺度特征能量-核极限学习机(kernel extreme learning machine, KELM)的故障诊断模型。首先对故障状态下压力信号采用小波分解获得多尺度信号,然后提取各尺度特征能量作为特征向量,最后将其输入经遗传算法优化的核极限学习智能诊断模型,实现双循环流化床气流堵塞故障的智能诊断。通过对公开的轴承故障数据集和双循环流化床冷态实验系统数据的分类识别分析,并与基于变分模态分解和样本熵特征提取的KELM诊断模型进行比较,结果表明:本模型具有较高的故障诊断精度(82.5%),能够有效提取故障特征,用于双循环流化床气流堵塞的高效分类识别。

关键词: 故障诊断, 循环流化床, 多尺度, 遗传算法, 核极限学习机

CLC Number: