CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2616-2625.DOI: 10.11949/0438-1157.20181334
• Process system engineering • Previous Articles Next Articles
Xin YANG1,2(),Zherui MA2(),Henan SHEN1,Hongwei CHEN2
Received:
2018-11-15
Revised:
2019-03-18
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zherui MA
通讯作者:
麻哲瑞
作者简介:
杨新(1987—),男,博士,讲师,<email>yangxin890322@126.com</email>
基金资助:
CLC Number:
Xin YANG, Zherui MA, Henan SHEN, Hongwei CHEN. Fault diagnosis of airflow jamming fault in double circulating fluidized bed based on multi-scale feature energy and KELM[J]. CIESC Journal, 2019, 70(7): 2616-2625.
杨新, 麻哲瑞, 申赫男, 陈鸿伟. 基于多尺度特征能量-核极限学习机的双循环流化床气流堵塞故障智能诊断[J]. 化工学报, 2019, 70(7): 2616-2625.
Add to citation manager EndNote|Ris|BibTeX
模型 | 训练精度 | 诊断精度 | |
---|---|---|---|
BPNN | 79.28% | 61.80% | |
SVM | 90.77% | 76.53% | |
ELM | 95.38% | 70.25% | |
KELM | 96.33% | 83.00% | |
VMD-SE-KLEM | 93.89% | 84.00% | |
WD-SE-KELM | 85.67% | 92.67% | |
VMD-FE-KELM | 94.33% | 95.00% | |
WD-FE-KELM | 95.78% | 95.33% |
Table 1 Model performance comparison
模型 | 训练精度 | 诊断精度 | |
---|---|---|---|
BPNN | 79.28% | 61.80% | |
SVM | 90.77% | 76.53% | |
ELM | 95.38% | 70.25% | |
KELM | 96.33% | 83.00% | |
VMD-SE-KLEM | 93.89% | 84.00% | |
WD-SE-KELM | 85.67% | 92.67% | |
VMD-FE-KELM | 94.33% | 95.00% | |
WD-FE-KELM | 95.78% | 95.33% |
K | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4.33×10-5 | — | — | — | — | — | — | — | — | — |
2 | 3.71×10-5 | 7.99 | — | — | — | — | — | — | — | — |
3 | 3.71×10-5 | 7.99 | 40.41 | — | — | — | — | — | — | — |
4 | 3.65×10-5 | 7.97 | 21.12 | 40.41 | — | — | — | — | — | — |
5 | 3.64×10-5 | 7.96 | 17.46 | 25.68 | 40.49 | — | — | — | — | — |
6 | 3.60×10-5 | 7.96 | 17.23 | 24.77 | 33.13 | 40.91 | — | — | — | — |
7 | 3.62×10-5 | 7.91 | 13.06 | 19.55 | 25.72 | 33.48 | 41.00 | — | — | — |
8 | 3.60×10-5 | 7.92 | 13.44 | 19.97 | 25.91 | 33.33 | 40.44 | 47.22 | — | — |
9 | 3.60×10-5 | 7.88 | 11.41 | 17.10 | 21.94 | 27.46 | 34.07 | 40.53 | 47.24 | — |
10 | 2.95×10-5 | 4.04 | 7.96 | 11.80 | 17.24 | 22.02 | 27.49 | 33.92 | 40.51 | 47.23 |
Table 2 VMD component center frequency at different K values
K | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4.33×10-5 | — | — | — | — | — | — | — | — | — |
2 | 3.71×10-5 | 7.99 | — | — | — | — | — | — | — | — |
3 | 3.71×10-5 | 7.99 | 40.41 | — | — | — | — | — | — | — |
4 | 3.65×10-5 | 7.97 | 21.12 | 40.41 | — | — | — | — | — | — |
5 | 3.64×10-5 | 7.96 | 17.46 | 25.68 | 40.49 | — | — | — | — | — |
6 | 3.60×10-5 | 7.96 | 17.23 | 24.77 | 33.13 | 40.91 | — | — | — | — |
7 | 3.62×10-5 | 7.91 | 13.06 | 19.55 | 25.72 | 33.48 | 41.00 | — | — | — |
8 | 3.60×10-5 | 7.92 | 13.44 | 19.97 | 25.91 | 33.33 | 40.44 | 47.22 | — | — |
9 | 3.60×10-5 | 7.88 | 11.41 | 17.10 | 21.94 | 27.46 | 34.07 | 40.53 | 47.24 | — |
10 | 2.95×10-5 | 4.04 | 7.96 | 11.80 | 17.24 | 22.02 | 27.49 | 33.92 | 40.51 | 47.23 |
系统状态 | 特征提取方法 | 尺度1/IMF2 | 尺度2/IMF3 | 尺度3/IMF4 | 尺度4/IMF5 | 尺度5/IMF6 | 尺度6/IMF7 | 尺度7/IMF8 |
---|---|---|---|---|---|---|---|---|
边壁堵塞 | VMD-SE | 0.11167 | 0.29565 | 0.53492 | 0.46485 | 0.23394 | 0.06911 | 0.00174 |
WD-SE | 0.31554 | 0.43322 | 0.66762 | 0.48942 | 0.15439 | 0.05994 | 0.00892 | |
VMD-FE | 0.29395 | 0.83809 | 0.74122 | 0.12259 | 0.01358 | 0.00084 | 0.00069 | |
WD-FE | 0.10558 | 0.46791 | 0.85912 | 0.17637 | 0.02507 | 0.00716 | 0.00637 | |
结块 | VMD-SE | 0.03594 | 0.00046 | 0.00062 | 0.00227 | 0.00133 | 0.00029 | 0.00059 |
WD-SE | 0.96752 | 0.11002 | 0.11603 | 0.08652 | 0.06287 | 0.15519 | 0.05303 | |
VMD-FE | 0.02199 | 0.02447 | 0.04116 | 0.00386 | 0.00013 | 0.00005 | 0.00166 | |
WD-FE | 0.46983 | 0.43053 | 0.60514 | 0.23291 | 0.07700 | 0.10832 | 0.39473 |
Table 3 Feature vectors of four feature extraction methods (partial)
系统状态 | 特征提取方法 | 尺度1/IMF2 | 尺度2/IMF3 | 尺度3/IMF4 | 尺度4/IMF5 | 尺度5/IMF6 | 尺度6/IMF7 | 尺度7/IMF8 |
---|---|---|---|---|---|---|---|---|
边壁堵塞 | VMD-SE | 0.11167 | 0.29565 | 0.53492 | 0.46485 | 0.23394 | 0.06911 | 0.00174 |
WD-SE | 0.31554 | 0.43322 | 0.66762 | 0.48942 | 0.15439 | 0.05994 | 0.00892 | |
VMD-FE | 0.29395 | 0.83809 | 0.74122 | 0.12259 | 0.01358 | 0.00084 | 0.00069 | |
WD-FE | 0.10558 | 0.46791 | 0.85912 | 0.17637 | 0.02507 | 0.00716 | 0.00637 | |
结块 | VMD-SE | 0.03594 | 0.00046 | 0.00062 | 0.00227 | 0.00133 | 0.00029 | 0.00059 |
WD-SE | 0.96752 | 0.11002 | 0.11603 | 0.08652 | 0.06287 | 0.15519 | 0.05303 | |
VMD-FE | 0.02199 | 0.02447 | 0.04116 | 0.00386 | 0.00013 | 0.00005 | 0.00166 | |
WD-FE | 0.46983 | 0.43053 | 0.60514 | 0.23291 | 0.07700 | 0.10832 | 0.39473 |
特征提取方法 | 正则化系数C | 核函数参数γ |
---|---|---|
VMD-SE | 127 | 0.112 |
WD-SE | 484 | 0.113 |
VMD-FE | 669 | 0.340 |
WD-FE | 485 | 0.438 |
Table 4 KELM parameters after genetic algorithm optimization
特征提取方法 | 正则化系数C | 核函数参数γ |
---|---|---|
VMD-SE | 127 | 0.112 |
WD-SE | 484 | 0.113 |
VMD-FE | 669 | 0.340 |
WD-FE | 485 | 0.438 |
模型 | 训练样本 | 测试样本 | 训练精度/% | 测试精度/% |
---|---|---|---|---|
VMD-SE-KLEM | 120 | 40 | 63.33 | 40 |
WD-SE-KELM | 120 | 40 | 67.17 | 50 |
VMD-FE-KELM | 120 | 40 | 100 | 60 |
WD-FE-KELM | 120 | 40 | 100 | 82.5 |
Table 5 Model performance comparison
模型 | 训练样本 | 测试样本 | 训练精度/% | 测试精度/% |
---|---|---|---|---|
VMD-SE-KLEM | 120 | 40 | 63.33 | 40 |
WD-SE-KELM | 120 | 40 | 67.17 | 50 |
VMD-FE-KELM | 120 | 40 | 100 | 60 |
WD-FE-KELM | 120 | 40 | 100 | 82.5 |
1 | 陈鸿伟, 刘焕志, 李晓伟, 等. 双循环流化床颗粒循环流率试验与BP神经网络预测[J]. 中国电机工程学报, 2010, 30(32): 25-29. |
ChenH W, LiuH Z, LiX W, et al. Experimental research on solids circulation rate in a double fluidized bed and BP neural network prediction[J]. Proceedings of the CSEE, 2010, 30(32): 25-29. | |
2 | 姜华伟. 基于风帽压力波动的流化床气固流态化特征研究[D]. 北京: 华北电力大学, 2013. |
JiangH W. Research on gas-solid fluidization characteristics of fluidized beds based on pressure fluctuations in wind caps[D]. Beijing: North China Electric Power University, 2013. | |
3 | 林伟国, 张鹏, 陈磊, 等. 流化床反应器结块故障的声纹特征提取及监测技术[J]. 化工学报, 2012, 63(9): 2851-2858. |
LinW G, ZhangP, ChenL, et al. Voiceprint extraction and monitoring of fluidized bed reactor agglomeration fault[J]. CIESC Journal, 2012, 63(9): 2851-2858. | |
4 | CaiB, HuangL, XieM. Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2227-2240. |
5 | RokkamR G, SowinskiA, FoxR O, et al. Computational and experimental study of electrostatics in gas-solid polymerization fluidized beds[J]. Chemical Engineering Science, 2013, 92: 146-156. |
6 | 杨大为, 冯辅周, 赵永东, 等. VMD样本熵特征提取方法及其在行星变速箱故障诊断中的应用[J]. 振动与冲击, 2018, 37(16): 198-205. |
YangD W, FengF Z, ZhaoY D, et al. A VMD sample entropy feature extraction method and its application in planetary gearbox fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(16): 198-205. | |
7 | 龙英, 何怡刚, 张镇, 等. 基于小波变换和ICA特征提取的开关电流电路故障诊断[J]. 仪器仪表学报, 2015, 36(10): 2389-2400. |
LongY, HeY G, ZhangZ, et al. Switched current circuit fault diagnosis based on wavelet transform and ICA feature extraction[J]. Chinese Journal of Scientific Instrument, 2015, 36(10): 2389-2400. | |
8 | MohantyS, GuptaK K, RajuK S. Hurst based vibro-acoustic feature extraction of bearing using EMD and VMD[J]. Measurement, 2018, 117: 200-220. |
9 | 史历程, 赵骁, 赵群飞, 等. 基于小波能谱熵和集成经验分解的传感器故障诊断耦合算法研究[J].动力工程学报, 2018, 38(8): 624-632. |
ShiL C, ZhaoX, ZhaoQ F, et al. Study on computing algorithm of sensor fault diagnosis based on WEE and EEMD[J]. Journal of Chinese Society of Power Engineering, 2018, 38(8): 624-632. | |
10 | 梁绍华, 郑立刚, 周昊, 等. 基于支持向量机与高斯分布估计的低NOx排放[J]. 化工学报, 2009, 60(1): 223-229. |
LiangS H, ZhengL G, ZhouH, et al. Low NOx emissions based on support vector machine and Gaussian estimation of distribution[J]. CIESC Journal, 2009, 60(1): 223-229. | |
11 | CaiB, ZhaoY, LiuH, et al. A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5590-5600 |
12 | CaiB P, LiuH L, XieM. A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks[J]. Mechanical Systems and Signal Processing, 2016, 80: 31-44. |
13 | 张秦梫, 宋辉, 姜勇, 等. 基于OS-ELM的变压器局部放电模式识别[J]. 高电压技术, 2018, 44(4): 1122-1130. |
ZhangQ Q, SongH, JiangY, et al. Partial discharge pattern recognition of transformer based on OS-ELM [J]. High Voltage Engineering, 2018, 44(4): 1122-1130. | |
14 | 王亚, 周孟然, 陈瑞云,等.到基于多层正则极限学习机的煤矿突水光谱判别方法[J].光学学报, 2018, 38(7): 367-376. |
WangY, ZhouM R, ChenR Y, et al. Identification method of coal mine water inrush spectrum based on multilayer regularization extreme learning machine[J]. Acta Optica Sinica, 2018, 38(7): 367-376. | |
15 | 牛培峰, 王枭飞, 刘楠, 等. ASOS-ELM建模方法及在汽轮机热耗率预测中的应用[J]. 化工学报, 2018, 69(9): 3924-3931. |
NiuP F, WangX F, LiuN, et al. Modeling method of ASOS-ELM and its application in prediction of heat rate of steam turbine[J]. CIESC Journal, 2018, 69(9): 3924-3931. | |
16 | HuangG B, ZhouH, DingX, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on System, Man and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529. |
17 | 李琨, 韩莹, 佘东生, 等. 基于IFOA-KELM-MEA模型的游梁式抽油机采油系统井下工况的短期预测[J]. 化工学报, 2017, 68(1): 188-198. |
LiK, HanY, SheD S, et al. IFOA-KELM-MEA model based transient prediction on down-hole working conditions of beam pumping units[J]. CIESC Journal, 2017, 68(1): 188-198. | |
18 | RauberT W, Oliveira-SantosT, BoldtF D A, et al. Kernel and random extreme learning machine applied to submersible motor pump fault diagnosis[C]// 2017 International Joint Conference on Neural Networks. Anchorage: IEEE Computational Intelligence Society, 2017: 3347-3354. |
19 | ChenZ, WuL, ChengS, et al. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and Ⅰ-Ⅴ characteristics[J]. Applied Energy, 2017, 204: 912-931. |
20 | JiangY, WuJ, ZongC. An effective diagnosis method for single and multiple defects detection in gearbox based on nonlinear feature selection and kernel-based extreme learning machine[J]. Journal of Vibroengineering, 2014, 16(1): 499-512. |
21 | DragomiretskiyK, ZossoD. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
22 | LiuR N, YangB Y, ZioE, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. |
23 | NasimiE, GabbarH A. Signal de-noising methods for fault diagnosis and troubleshooting at CANDU (R) stations[J]. Nuclear Engineering and Design, 2014, 280: 481-492. |
24 | BhattacharyyaA, SharmaM, PachoriR B, et al. A novel approach for automated detection of focal EEG signals using empirical wavelet transform[J]. Neural Computing & Applications, 2018, 29(8): 47-57. |
25 | WangD, ZhaoY, YiC, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2018, 101: 292-308. |
26 | YangT Y, LeuL P. Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed[J]. American Institute Of Chemical Engineers, 2009, 55(3): 612-629. |
27 | 张永俊, 王嘉骏, 顾雪萍, 等. 气固搅拌流化床中压力脉动特性[J]. 化工学报, 2016, 67(2): 494-503. |
ZhangY J, WangJ J, GuX P, et al. Pressure fluctuation in gas-solid agitated fluidized bed[J]. CIESC Journal, 2016, 67(2): 494-503. | |
28 | YumM K, JungK Y, KangH C, et al. Effect of a ketogenic diet on EEG: analysis of sample entropy[J]. Seizure, 2008, 17(6): 561-566. |
29 | HuangG, HuangG B, SongS, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48. |
30 | HuangG, HuangG B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390. |
31 | AlencarA S C, RochanetoA R, GomesJ P P. A new pruning method for extreme learning machines via genetic algorithms[J]. Applied Soft Computing Journal, 2016, 44: 101-107. |
32 | SmithW A, RandallR B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100-131. |
33 | 刘长良, 武英杰, 甄成刚, 等. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365. |
LiuC L, WuY J, ZhenC G, et al. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365. | |
34 | WangB, HuX, WangW, et al. Fault diagnosis using improved pattern spectrum and fruit fly optimization algorithm-support vector machine[J]. Advances in Mechanical Engineering, 2018, 10(11): 1-10. |
35 | 俞啸. 数据驱动的滚动轴承故障特征分析与诊断方法研究[D]. 徐州: 中国矿业大学, 2017. |
YuX. Rolling bearing fault feature analysis and diagnosis method based on data-driven model[D]. Xuzhou: China University of Mining and Technology, 2017. | |
36 | MaoW T, HeL, YanY J, et al. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine[J]. Mechanical Systems and Signal Processing, 2017, 83(15): 450-473. |
[1] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[2] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[3] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[4] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[5] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[6] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[7] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[8] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[9] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[10] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
[11] | Wei LIU, Yan SUN. Research progress on amyloid β-protein aggregation and its regulation [J]. CIESC Journal, 2022, 73(6): 2381-2396. |
[12] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[13] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[14] | Qucheng LIN, Zuwei LIAO. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm [J]. CIESC Journal, 2022, 73(11): 5047-5055. |
[15] | ZHANG Chi, LI Hao, HU Haitao, ZHU Chong, ZHANG Yuying, NAN Guopeng, SHU Yue. Aircraft bearing fault diagnosis based on automatic feature engineering [J]. CIESC Journal, 2021, 72(S1): 430-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||