CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 827-837.DOI: 10.11949/0438-1157.20211295
• Process system engineering • Previous Articles Next Articles
Cheng ZHANG1(),Lizhi PAN2,Yuan LI2()
Received:
2021-09-06
Revised:
2021-11-09
Online:
2022-02-18
Published:
2022-02-05
Contact:
Yuan LI
通讯作者:
李元
作者简介:
张成(1979—),男,博士,副教授,基金资助:
CLC Number:
Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA[J]. CIESC Journal, 2022, 73(2): 827-837.
张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837.
Add to citation manager EndNote|Ris|BibTeX
校验准确率 | 平均值 | ||
---|---|---|---|
R | H | ||
90.8 | 76.7 | 83.7 | |
91.7 | 75.6 | 83.6 | |
97.6 | 71.4 | 84.5 | |
97.6 | 69.1 | 83.3 | |
97.6 | 65.7 | 81.6 |
Table 1 Validation accuracy at different parameter β
校验准确率 | 平均值 | ||
---|---|---|---|
R | H | ||
90.8 | 76.7 | 83.7 | |
91.7 | 75.6 | 83.6 | |
97.6 | 71.4 | 84.5 | |
97.6 | 69.1 | 83.3 | |
97.6 | 65.7 | 81.6 |
ICA | KICA | KPCA | SLKPCA | WSFKICA | |||||
---|---|---|---|---|---|---|---|---|---|
27.6 | 10.4 | 27.8 | 18.6 | 6.4 | 2.8 | 86 | 87 | 97.2 | 92.2 |
Table 2 Fault detection rates of each method in simulated case
ICA | KICA | KPCA | SLKPCA | WSFKICA | |||||
---|---|---|---|---|---|---|---|---|---|
27.6 | 10.4 | 27.8 | 18.6 | 6.4 | 2.8 | 86 | 87 | 97.2 | 92.2 |
序号 | ICA | KICA | KPCA | WSFKICA | ||||
---|---|---|---|---|---|---|---|---|
1 | 95.7 | 99.3 | 98 | 98.7 | 99.1 | 99.3 | 99.7 | 100 |
2 | 87.9 | 94.9 | 86.6 | 94 | 94.4 | 94.7 | 93 | 99.4 |
3 | 11.1 | 10.7 | 1.6 | 1.3 | 0.6 | 10.3 | 21 | 98.6 |
4 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
5 | 34.7 | 19.9 | 4 | 0.6 | 1 | 23.3 | 43 | 99.6 |
6 | — | — | — | — | — | — | — | — |
7 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
8 | 86.6 | 88.6 | 86.4 | 85.9 | 87.6 | 89.4 | 90.4 | 93 |
9 | 8.7 | 18.29 | 2.4 | 7.3 | 4.3 | 13.9 | 38.3 | 88.4 |
10 | 88 | 88.6 | 80.9 | 84.7 | 86.9 | 89.1 | 93.3 | 96.7 |
11 | 89.4 | 98.7 | 95.1 | 96.6 | 98.4 | 98.4 | 99.4 | 100 |
12 | 32.4 | 74.1 | 33.1 | 35.9 | 40.4 | 77 | 95.1 | 100 |
13 | 92 | 94.71 | 93.6 | 94.1 | 94.3 | 94.9 | 96.7 | 100 |
14 | 83.9 | 98.9 | 97.9 | 98.7 | 98.7 | 98.9 | 100 | 100 |
15 | 14.6 | 0.4 | 0.1 | 0 | 0 | 1.9 | 54.4 | 99.4 |
16 | 5 | 6.1 | 6.3 | 5.9 | 1.4 | 0.9 | 6.7 | 5.7 |
17 | 81.1 | 84.9 | 76.3 | 80 | 84.7 | 84.9 | 88.7 | 90.7 |
18 | 52.9 | 62.86 | 48.1 | 49.6 | 51.6 | 62.1 | 68.7 | 70.9 |
19 | 93.7 | 95 | 88.9 | 90.6 | 93.1 | 95.4 | 94 | 98.7 |
20 | 85.9 | 85.1 | 83.6 | 85.4 | 85.3 | 85.3 | 87.4 | 91.4 |
21 | 5 | 6.4 | 6.4 | 5.7 | 1.6 | 0.9 | 7.3 | 12.4 |
22 | 17.3 | 13.1 | 1.6 | 0.9 | 0.4 | 13.1 | 23.9 | 87.4 |
23 | 16.7 | 12.6 | 11.4 | 18.7 | 4.7 | 3.7 | 44.9 | 100 |
24 | 79.3 | 87.7 | 70.1 | 83.9 | 83 | 88.4 | 91.4 | 93.1 |
25 | 94.1 | 93.4 | 83.7 | 88.3 | 87 | 95 | 98.1 | 100 |
26 | 62.3 | 87.1 | 58.1 | 77.3 | 85.6 | 88.6 | 88.1 | 95.1 |
27 | 50.1 | 87 | 59.7 | 58.4 | 71.6 | 90 | 96.4 | 100 |
28 | 15.7 | 13 | 2.4 | 0.4 | 0.6 | 15 | 3.7 | 91.7 |
Table 3 Fault detection rates of each method in TE process
序号 | ICA | KICA | KPCA | WSFKICA | ||||
---|---|---|---|---|---|---|---|---|
1 | 95.7 | 99.3 | 98 | 98.7 | 99.1 | 99.3 | 99.7 | 100 |
2 | 87.9 | 94.9 | 86.6 | 94 | 94.4 | 94.7 | 93 | 99.4 |
3 | 11.1 | 10.7 | 1.6 | 1.3 | 0.6 | 10.3 | 21 | 98.6 |
4 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
5 | 34.7 | 19.9 | 4 | 0.6 | 1 | 23.3 | 43 | 99.6 |
6 | — | — | — | — | — | — | — | — |
7 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
8 | 86.6 | 88.6 | 86.4 | 85.9 | 87.6 | 89.4 | 90.4 | 93 |
9 | 8.7 | 18.29 | 2.4 | 7.3 | 4.3 | 13.9 | 38.3 | 88.4 |
10 | 88 | 88.6 | 80.9 | 84.7 | 86.9 | 89.1 | 93.3 | 96.7 |
11 | 89.4 | 98.7 | 95.1 | 96.6 | 98.4 | 98.4 | 99.4 | 100 |
12 | 32.4 | 74.1 | 33.1 | 35.9 | 40.4 | 77 | 95.1 | 100 |
13 | 92 | 94.71 | 93.6 | 94.1 | 94.3 | 94.9 | 96.7 | 100 |
14 | 83.9 | 98.9 | 97.9 | 98.7 | 98.7 | 98.9 | 100 | 100 |
15 | 14.6 | 0.4 | 0.1 | 0 | 0 | 1.9 | 54.4 | 99.4 |
16 | 5 | 6.1 | 6.3 | 5.9 | 1.4 | 0.9 | 6.7 | 5.7 |
17 | 81.1 | 84.9 | 76.3 | 80 | 84.7 | 84.9 | 88.7 | 90.7 |
18 | 52.9 | 62.86 | 48.1 | 49.6 | 51.6 | 62.1 | 68.7 | 70.9 |
19 | 93.7 | 95 | 88.9 | 90.6 | 93.1 | 95.4 | 94 | 98.7 |
20 | 85.9 | 85.1 | 83.6 | 85.4 | 85.3 | 85.3 | 87.4 | 91.4 |
21 | 5 | 6.4 | 6.4 | 5.7 | 1.6 | 0.9 | 7.3 | 12.4 |
22 | 17.3 | 13.1 | 1.6 | 0.9 | 0.4 | 13.1 | 23.9 | 87.4 |
23 | 16.7 | 12.6 | 11.4 | 18.7 | 4.7 | 3.7 | 44.9 | 100 |
24 | 79.3 | 87.7 | 70.1 | 83.9 | 83 | 88.4 | 91.4 | 93.1 |
25 | 94.1 | 93.4 | 83.7 | 88.3 | 87 | 95 | 98.1 | 100 |
26 | 62.3 | 87.1 | 58.1 | 77.3 | 85.6 | 88.6 | 88.1 | 95.1 |
27 | 50.1 | 87 | 59.7 | 58.4 | 71.6 | 90 | 96.4 | 100 |
28 | 15.7 | 13 | 2.4 | 0.4 | 0.6 | 15 | 3.7 | 91.7 |
1 | Kresta J V, MacGregor J F, Marlin T E. Multivariate statistical monitoring of process operating performance[J]. The Canadian Journal of Chemical Engineering, 1991, 69(1): 35-47. |
2 | 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944-1956. |
Liu Q, Zhuo J, Lang Z Q, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44(11): 1944-1956. | |
3 | 孔祥玉, 曹泽豪, 杜柏阳, 等. 基于偏最小二乘的质量相关多模态故障检测技术[J]. 控制与决策, 2019, 34(12): 2547-2557. |
Kong X Y, Cao Z H, Du B Y, et al. Quality-related multimodal fault detection technique based on partial least squares[J]. Control and Decision, 2019, 34(12): 2547-2557. | |
4 | Yang Y W, Ma Y X, Song B, et al. An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1357-1363. |
5 | 冯立伟, 张成, 李元, 等. 基于双近邻标准化和PCA的多阶段过程故障检测[J]. 化工学报, 2018, 69(7): 3159-3166. |
Feng L W, Zhang C, Li Y, et al. DLNS-PCA-based fault detection for multimode batch process[J]. CIESC Journal, 2018, 69(7): 3159-3166. | |
6 | Chen M C, Hsu C C, Malhotra B, et al. An efficient ICA-DW-SVDD fault detection and diagnosis method for non-Gaussian processes[J]. International Journal of Production Research, 2016, 54(17): 5208-5218. |
7 | Yu J, Yoo J, Jang J, et al. A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes[J]. Journal of Process Control, 2018, 68: 129-144. |
8 | Teimoortashloo M, Sedigh A K. A modified independent component analysis-based fault detection method in plant-wide systems[J]. Control and Cybernetics, 2015, 44(2): 287-310. |
9 | Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis[J]. AIChE Journal, 2006, 52(10): 3501-3514. |
10 | Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
11 | Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA[J]. Chemical Engineering Science, 2004, 59(24): 5897-5908. |
12 | 赵忠盖, 刘飞. 一种基于核独立元分析的非线性过程监控方法[J]. 系统仿真学报, 2008, 20(20): 5585-5588. |
Zhao Z G, Liu F. Nonlinear process monitoring method based on kernel independent component analysis[J]. Journal of System Simulation, 2008, 20(20): 5585-5588. | |
13 | Lee J M, Qin S J, Lee I B. Fault detection of non-linear processes using kernel independent component analysis[J]. The Canadian Journal of Chemical Engineering, 2007, 85(4): 526-536. |
14 | Rashid M M, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10910-10920. |
15 | 周东华, 郭天序, 陈茂银. 基于多次移动平均的微小故障检测方法和装置: 103776480A[P]. 2014-05-07. |
Zhou D H, Guo T X, Chen M Y. Small-fault detection method and device based on multiple moving average: 103776480A[P]. 2014-05-07. | |
16 | 邓佳伟, 邓晓刚, 曹玉苹, 等. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605. |
Deng J W, Deng X G, Cao Y P, et al. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605. | |
17 | Zheng K, Luo J F, Zhang Y, et al. Incipient fault detection of rolling bearing using maximum autocorrelation impulse harmonic to noise deconvolution and parameter optimized fast EEMD[J]. ISA Transactions, 2019, 89: 256-271. |
18 | Wang Y, Tse P W, Tang B P, et al. Kurtogram manifold learning and its application to rolling bearing weak signal detection[J]. Measurement, 2018, 127: 533-545. |
19 | Wang D, Tsui K L. Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients[J]. Mechanical Systems and Signal Processing, 2017, 88: 137-144. |
20 | Li G Z, Tang G, Luo G G, et al. Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition[J]. Mechanical Systems and Signal Processing, 2019, 120: 83-97. |
21 | Safaeipour H, Forouzanfar M, Ramezani A. Incipient fault detection in nonlinear non-Gaussian noisy environment[J]. Measurement, 2021, 174: 109008. |
22 | 吴强, 孔凡让, 何清波, 等. 基于小波变换和ICA的滚动轴承早期故障诊断[J]. 中国机械工程, 2012, 23(7): 835-840. |
Wu Q, Kong F R, He Q B, et al. Early fault diagnosis of rolling element bearings based on wavelet transform and independent component analysis[J]. China Mechanical Engineering, 2012, 23(7): 835-840. | |
23 | Basseville M. On-board component fault detection and isolation using the statistical local approach[J]. Automatica, 1998, 34(11): 1391-1415. |
24 | Kruger U, Kumar S, Littler T. Improved principal component monitoring using the local approach[J]. Automatica, 2007, 43(9): 1532-1542. |
25 | Ge Z Q, Yang C J, Song Z H. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255. |
26 | Chen J, Liao C M. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2): 277-289. |
27 | Hyvärinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411-430. |
28 | Odiowei P P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 103(1): 59-65. |
29 | Shen X, Agrawal S. Kernel density estimation for an anomaly based intrusion detection system[C]// Proceedings of the 2006 International Conference on Machine Learning. Models, Technologies & Applications. Las Vegas, Nevada, USA: DBLP, 2006. |
30 | 邓晓刚, 田学民. 一种基于KPCA的非线性故障诊断方法[J]. 山东大学学报(工学版), 2005, 35(3): 103-106. |
Deng X G, Tian X M. Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science), 2005, 35(3): 103-106. | |
31 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
32 | Bathelt A, Ricker N L, Jelali M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[6] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[7] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[8] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[11] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[12] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[13] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[14] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[15] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||