CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3465-3472.DOI: 10.11949/0438-1157.20190122
• Process system engineering • Previous Articles Next Articles
Xiaoqin LIAN1,2(),Liwei WANG1,2,Sa AN1,2,Wei WEI1,2(),Zaiwen LIU1,2
Received:
2018-02-18
Revised:
2018-05-16
Online:
2019-09-05
Published:
2019-09-05
Contact:
Wei WEI
廉小亲1,2(),王俐伟1,2,安飒1,2,魏伟1,2(),刘载文1,2
通讯作者:
魏伟
作者简介:
廉小亲(1967—),女,博士,教授,基金资助:
CLC Number:
Xiaoqin LIAN, Liwei WANG, Sa AN, Wei WEI, Zaiwen LIU. On soft sensor of chemical oxygen demand by SOM-RBF neural network[J]. CIESC Journal, 2019, 70(9): 3465-3472.
廉小亲, 王俐伟, 安飒, 魏伟, 刘载文. 基于SOM-RBF神经网络的COD软测量方法[J]. 化工学报, 2019, 70(9): 3465-3472.
Add to citation manager EndNote|Ris|BibTeX
模型输入 | 模型输出 | |||
---|---|---|---|---|
氧化还原电 位(ORP)/mV | 浊度(SS)/ NTU | 流量(Q in)/ (m3·h) | 溶解氧(DO)/ (mg·L-1) | 出水化学需氧量 (COD)/(mg·L-1) |
-68.00 | 65.00 | 1544.00 | 3.64 | 80.50 |
-56.00 | 105.44 | 2001.00 | 3.67 | 63.40 |
-56.00 | 115.00 | 2423.00 | 3.43 | 59.80 |
-90.00 | 120.40 | 2358.00 | 3.86 | 56.10 |
-71.00 | 65.00 | 1742.00 | 3.83 | 63.40 |
-81.00 | 105.44 | 1883.00 | 4.79 | 43.90 |
-93.00 | 115.00 | 2293.00 | 3.32 | 43.90 |
-91.00 | 120.39 | 1915.00 | 3.40 | 87.00 |
-84.00 | 137.22 | 1907.00 | 3.85 | 34.20 |
-59.00 | 138.00 | 1914.00 | 3.43 | 53.70 |
Table 1 Part of measured data
模型输入 | 模型输出 | |||
---|---|---|---|---|
氧化还原电 位(ORP)/mV | 浊度(SS)/ NTU | 流量(Q in)/ (m3·h) | 溶解氧(DO)/ (mg·L-1) | 出水化学需氧量 (COD)/(mg·L-1) |
-68.00 | 65.00 | 1544.00 | 3.64 | 80.50 |
-56.00 | 105.44 | 2001.00 | 3.67 | 63.40 |
-56.00 | 115.00 | 2423.00 | 3.43 | 59.80 |
-90.00 | 120.40 | 2358.00 | 3.86 | 56.10 |
-71.00 | 65.00 | 1742.00 | 3.83 | 63.40 |
-81.00 | 105.44 | 1883.00 | 4.79 | 43.90 |
-93.00 | 115.00 | 2293.00 | 3.32 | 43.90 |
-91.00 | 120.39 | 1915.00 | 3.40 | 87.00 |
-84.00 | 137.22 | 1907.00 | 3.85 | 34.20 |
-59.00 | 138.00 | 1914.00 | 3.43 | 53.70 |
算法 | 训练时间/s | 训练误差绝对值平均/(mg·L-1) | 测试误差绝对值平均/(mg·L-1) | 均方误差 | 训练相对误差/% |
---|---|---|---|---|---|
BP | 93.32 | 1.15 | 1.23 | 2.10 | 12 |
RBF | 8.62 | 0.78 | 0.89 | 1.97 | 10 |
K-means-RBF | 5.30 | — | 0.52 | 0.55 | — |
SOM-RBF | 5.35 | 0.27 | 0.36 | 0.23 | 3 |
Table 2 Comparison of prediction results of four models
算法 | 训练时间/s | 训练误差绝对值平均/(mg·L-1) | 测试误差绝对值平均/(mg·L-1) | 均方误差 | 训练相对误差/% |
---|---|---|---|---|---|
BP | 93.32 | 1.15 | 1.23 | 2.10 | 12 |
RBF | 8.62 | 0.78 | 0.89 | 1.97 | 10 |
K-means-RBF | 5.30 | — | 0.52 | 0.55 | — |
SOM-RBF | 5.35 | 0.27 | 0.36 | 0.23 | 3 |
1 | 穆瑞, 乐高杨, 杨慧中 . 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735. |
Mu R , Le G Y , Yang H Z . Estimation method of gas dissolved amount based on O3/UV method for online COD detection [J]. CIESC Journal, 2019, 70(2): 730-735. | |
2 | 宋建军, 赵凌 . 紫外吸收光谱法检测化学需氧量的方法[J]. 传感器与微系统, 2018, 37(5): 30-33. |
Song J J , Zhao L . Methods for determination of chemical oxygen demand by ultraviolet absorption spectroscopy[J]. Transducer and Microsystems, 2018, 37(5): 30-33. | |
3 | 李名升, 张建辉, 罗海江, 等 . “十一五”期间中国化学需氧量减排与水环境质量变化关联分析[J]. 生态环境学报, 2011, 20(3): 463-467. |
Li M S , Zhang J H , Luo H J , et al . Relation between water quality and COD discharge in China in the Eleventh Five-Year Plan[J]. Ecology and Environmental Sciences, 2011, 20(3): 463-467. | |
4 | Hanbay D , Turkoglu I , Demir Y . Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks[J]. CLEAN - Soil, Air, Water, 2010, 35(3): 250-254. |
5 | Li Q , Peng J , Tang D , et al . A study on the UKFNN-based online detection of effluent COD in water sewage treatment[C]// Industrial Electronics & Applications. IEEE, 2015. |
6 | 李雪梅, 朱燕 . 快速消解分光光度法测定污水化学需氧量[J]. 化学分析计量, 2018, 27(3): 36-39. |
Li X M , Zhu Y . Determination of chemical oxygen demand in sewage by rapid digestion spectrophotometry[J]. Chemical Analysis & Metering, 2018, 27(3): 36-39. | |
7 | 孙立岩, 姚志鹏, 张军, 等 . 地表水中TOC与COD换算关系研究[J]. 中国环境监测, 2013, 29(2): 125-130. |
Sun L Y , Yao Z P , Zhang J , et al . Study on the relationship between TOC and COD conversion in surface water [J]. Environmental Monitoring in China, 2013, 29(2): 125-130. | |
8 | Zhao H , Jiang D , Zhang S , et al . Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2015, 76(1): 155-160. |
9 | 肖峻, 杨孟孟, 缪震华, 等 . 嵌入式污水COD在线监测仪的研制与应用[J]. 环境工程学报, 2017, 11(5): 3312-3319. |
Xiao J , Yang M M , Miu Z H , et al . Development and application of embedded COD online monitoring instrument for sewage [J]. Journal of Environmental Engineering, 2017, 11(5): 3312-3319. | |
10 | Ye Y , Zhuang Y . The COD predictive technique based on neural network[C]// International Conference on Mechatronic Sciences. IEEE, 2014. |
11 | 曹为阳 . 污水处理出水COD软测量预测建模方法的研究[D]. 马鞍山: 安徽工业大学, 2017. |
Cao W Y . Research on COD soft measurement prediction modeling method for wastewater treatment effluent [D]. Ma’anshan: Anhui University of Technology, 2017. | |
12 | Azadi S , Amiri H , Rakhshandehroo G R . Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills[J]. Waste Management, 2016, 55: 220-230. |
13 | Qiao J , Li W , Han H . Soft computing of biochemical oxygen demand using an improved T–S fuzzy neural network[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1254-1259. |
14 | Li Y H , Shi Y T , Wang K , et al . Design of online monitoring device for COD parameter in industrial sewage based on soft measurement method[C]// Automation. IEEE, 2017: 959-964. |
15 | 乔俊飞, 郭楠, 韩红桂 . 基于神经网络的BOD参数软测量仪表的设计[J]. 计算机与应用化学, 2013, 30(10): 1219-1222. |
Qiao J F , Guo N , Han H G . Design of soft measuring instrument for BOD parameters based on neural network[J]. Computer and Applied Chemistry, 2013, 30(10): 1219-1222. | |
16 | 任东红 . 基于集成神经网络的污水处理出水水质软测量模型[D]. 北京: 北京工业大学, 2013. |
Ren D H . Soft sensor model for wastewater treatment effluent based on integrated neural network [D]. Beijing: Beijing University of Technology, 2013. | |
17 | 郭楠 . 基于神经网络的BOD软测量仪表的研究[D]. 北京: 北京工业大学, 2014. |
Guo N . Research on BOD soft measuring instrument based on neural network [D]. Beijing: Beijing University of Technology, 2014. | |
18 | 乔俊飞, 安茹, 韩红桂 . 基于RBF神经网络的出水氨氮预测研究[J]. 控制工程, 2016, 23(9): 1301-1305. |
Qiao J F , An R , Han H G . Prediction of effluent ammonia nitrogen based on RBF neural network[J]. Control Engineering, 2016, 23(9): 1301-1305. | |
19 | 崔雪梅 . 基于灰色GA-LM-BP模型的COD_(Mn)预测[J]. 水利水电科技进展, 2013, 33(5): 38-41. |
Cui X M . Prediction of COD_(Mn) based on grey GA-LM-BP model[J]. Advances in Science and Technology of Water Resources, 2013, 33(5): 38-41. | |
20 | 高峰, 冯民权, 滕素芬 . 基于PSO优化BP神经网络的水质预测研究[J]. 安全与环境学报, 2015, 15(4): 338-341. |
Gao F , Feng M Q , Teng S F . Water quality prediction based on BP neural network optimized by PSO[J]. Journal of Safety and Environment, 2015, 15(4): 338-341. | |
21 | Ye G Q , Li W G , Wan H . Study of RBF neural network based on PSO algorithm in nonlinear system identification[C]// International Conference on Intelligent Computation Technology & Automation. IEEE, 2016. |
22 | 乔俊飞, 孙玉庆, 韩红桂 . 改进K-means算法优化RBF神经网络的出水氨氮预测[J]. 控制工程, 2018, 25(3): 375-379. |
Qiao J F , Sun Y Q , Han H G . Improved K-means algorithm for optimization of effluent ammonia nitrogen prediction in RBF neural network[J]. Control Engineering, 2018, 25(3): 375-379. | |
23 | 刘博, 肖长来, 梁秀娟 . SOM-RBF神经网络模型在地下水位预测中的应用[J]. 吉林大学学报(地球科学版), 2015, 45(1): 225-231. |
Liu B , Xiao C L , Liang X J . Application of SOM-RBF neural network model in groundwater level prediction[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 225-231. | |
24 | 乔俊飞, 马士杰, 杨翠丽 . 基于ROLS算法的递归RBF神经网络结构设计[J]. 化工学报, 2018, 69(3): 1191-1199. |
Qiao J F , Ma S J , Yang C L . Structural design of recursive RBF neural network based on ROLS algorithm[J]. CIESC Journal, 2018, 69(3): 1191-1199. | |
25 | 李文静, 李萌, 乔俊飞 . 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695. |
Li W J , Li M , Qiao J F . Soft measurement method of effluent BOD based on mutual information and self-organizing RBF neural network [J]. CIESC Journal, 2019, 70(2): 687-695. | |
26 | 李晋贤 . 基于HS-RBF的污水处理出水COD软测量研究[D]. 绵阳: 西南科技大学, 2017. |
Li J X . Soft-measurement of COD based on HS-RBF for wastewater treatment [D]. Mianyang: Southwest University of Science and Technology, 2017. | |
27 | 韩红桂, 林征来, 乔俊飞 . 一种基于混合梯度下降算法的模糊神经网络设计及应用[J]. 控制与决策, 2017, 32(9): 1635-1641. |
Han H G , Lin Z L , Qiao J F . Design and application of a fuzzy neural network based on hybrid gradient descent algorithm [J]. Control and Decision-making, 2017, 32(9): 1635-1641. | |
28 | 孙娅楠 . 梯度下降法在机器学习中的应用[D]. 成都: 西南交通大学, 2018. |
Sun Y N . Application of gradient descent method in machine learning [D]. Chengdu: Southwest Jiaotong University, 2018. | |
29 | 周萌, 王振华, 王昶, 等 . Lipschitz非线性系统的H_/L ∞故障检测观测器设计[J]. 控制理论与应用, 2018, 35(6): 778-785. |
Zhou M , Wang Z H , Wang C , et al . H_/L ∞ fault detection observer design for Lipschitz nonlinear systems [J]. Control Theory and Applications, 2008, 35(6): 778-785. | |
30 | Jakovetić D , Xavier J , Moura J M F . Convergence rate analysis of distributed gradient methods for smooth optimization[C]// Telecommunications Forum. IEEE, 2013: 867-870. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[5] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[6] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[7] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[8] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[9] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[10] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[11] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[12] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[13] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[14] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[15] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||