CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2684-2690.DOI: 10.11949/0438-1157.20190139
• Energy and environmental engineering • Previous Articles Next Articles
Yubo TU1,2(),Peiwei HAN1,Lianqi WEI1,Xiaomeng ZHANG1,Yingchao DU1,2,Yongliang WANG1,Shufeng YE1()
Received:
2019-02-21
Revised:
2019-04-16
Online:
2019-07-05
Published:
2019-07-05
Contact:
Shufeng YE
涂玉波1,2(),韩培伟1,魏连启1,仉小猛1,杜英超1,2,王永良1,叶树峰1()
通讯作者:
叶树峰
作者简介:
涂玉波(1975—),男,硕士,高级工程师,<email>tuyubo-1@163.com</email>
CLC Number:
Yubo TU, Peiwei HAN, Lianqi WEI, Xiaomeng ZHANG, Yingchao DU, Yongliang WANG, Shufeng YE. Adsorption of cyanide by typical minerals of cyanide slag[J]. CIESC Journal, 2019, 70(7): 2684-2690.
涂玉波, 韩培伟, 魏连启, 仉小猛, 杜英超, 王永良, 叶树峰. 氰化渣典型矿物对氰的吸附[J]. 化工学报, 2019, 70(7): 2684-2690.
Add to citation manager EndNote|Ris|BibTeX
Mineral | S | Fe | As | SiO2 |
---|---|---|---|---|
pyrite | 49.83 | 45.62 | 0.02 | 1.67 |
Table 1 Chemical component of minerals(1)/%(mass)
Mineral | S | Fe | As | SiO2 |
---|---|---|---|---|
pyrite | 49.83 | 45.62 | 0.02 | 1.67 |
Mineral | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | CaO | Na2O |
---|---|---|---|---|---|---|---|
quartz | 97.45 | 0.92 | 0.61 | 0.06 | 0.02 | 0.05 | 0.03 |
muscovite | 43.89 | 35.42 | 6.78 | 2.35 | 8.07 | 1.47 | 0.66 |
feldspar | 66.31 | 18.02 | 1.15 | 0.43 | 10.84 | 1.02 | 2.05 |
montmorillonite | 71.88 | 13.82 | 1.08 | 3.43 | 0.63 | 4.57 | 1.25 |
Table 2 Chemical component of minerals(2)/%(mass)
Mineral | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | CaO | Na2O |
---|---|---|---|---|---|---|---|
quartz | 97.45 | 0.92 | 0.61 | 0.06 | 0.02 | 0.05 | 0.03 |
muscovite | 43.89 | 35.42 | 6.78 | 2.35 | 8.07 | 1.47 | 0.66 |
feldspar | 66.31 | 18.02 | 1.15 | 0.43 | 10.84 | 1.02 | 2.05 |
montmorillonite | 71.88 | 13.82 | 1.08 | 3.43 | 0.63 | 4.57 | 1.25 |
Mineral | Freundlich adsorption equation | Langmuir adsorption equation | ||||||
---|---|---|---|---|---|---|---|---|
kF | 1/n | R2 | qm | kL | R2 | |||
pyrite | 0.0218 | 0.8863 | 0.952 | 13.89 | 0.0011 | 0.996 | ||
silicate mixture | 0.0527 | 0.4702 | 0.851 | 1.09 | 0.0141 | 0.999 | ||
synthetic cyanide tailing | 0.0507 | 0.605 | 0.964 | 6.89 | 0.0015 | 0.995 |
Table 3 Adsorption characteristics of different minerals for CN-
Mineral | Freundlich adsorption equation | Langmuir adsorption equation | ||||||
---|---|---|---|---|---|---|---|---|
kF | 1/n | R2 | qm | kL | R2 | |||
pyrite | 0.0218 | 0.8863 | 0.952 | 13.89 | 0.0011 | 0.996 | ||
silicate mixture | 0.0527 | 0.4702 | 0.851 | 1.09 | 0.0141 | 0.999 | ||
synthetic cyanide tailing | 0.0507 | 0.605 | 0.964 | 6.89 | 0.0015 | 0.995 |
No. | Composition/%(mass) | qm(SC)/(mg/g) | ||
---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | ||
1 | 0 | 0 | 100 | 0.02 |
2 | 0 | 100 | 0 | 1.09 |
3 | 5 | 40 | 55 | 3.67 |
4 | 10 | 30 | 60 | 4.40 |
5 | 15 | 25 | 60 | 6.12 |
6 | 15 | 20 | 65 | 5.80 |
7 | 20 | 30 | 50 | 6.39 |
8 | 25 | 25 | 50 | 7.49 |
9 | 30 | 20 | 50 | 8.46 |
10 | 100 | 0 | 0 | 13.89 |
Table 4 CN- adsorption capacity of cyanide tailing with different compositions
No. | Composition/%(mass) | qm(SC)/(mg/g) | ||
---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | ||
1 | 0 | 0 | 100 | 0.02 |
2 | 0 | 100 | 0 | 1.09 |
3 | 5 | 40 | 55 | 3.67 |
4 | 10 | 30 | 60 | 4.40 |
5 | 15 | 25 | 60 | 6.12 |
6 | 15 | 20 | 65 | 5.80 |
7 | 20 | 30 | 50 | 6.39 |
8 | 25 | 25 | 50 | 7.49 |
9 | 30 | 20 | 50 | 8.46 |
10 | 100 | 0 | 0 | 13.89 |
No. | Composition/%(mass) | qm(SC)/(mg/g) | |||
---|---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | Calculated value | Measured value | |
11 | 10 | 20 | 70 | 4.62 | 4.59 |
12 | 30 | 30 | 40 | 7.54 | 7.92 |
13 | 50 | 10 | 30 | 10.78 | 11.03 |
Table 5 Verification of mathematical model
No. | Composition/%(mass) | qm(SC)/(mg/g) | |||
---|---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | Calculated value | Measured value | |
11 | 10 | 20 | 70 | 4.62 | 4.59 |
12 | 30 | 30 | 40 | 7.54 | 7.92 |
13 | 50 | 10 | 30 | 10.78 | 11.03 |
1 | 杨剧文, 王二军.黄金选冶技术进展[J]. 矿产保护与利用, 2007, (4): 34-38. |
YangJ W, WangE J. Progress of mineral processing and metallurgy for gold ores[J]. Conservation and Utilization of Mineral Resources, 2007, (4): 34-38. | |
2 | AdamsM D. Advances in Gold Ore Processing[M]. Amsterdam: Elsevier B.V., 2005: 479-482. |
3 | HabashiF. One hundred years of cyanidation[J]. Cim. Bulletin., 1987, 80(905): 108-114. |
4 | TuY B, HanP W, WeiL Q, et al. Removal of cyanide adsorbed on pyrite by H2O2 oxidation under alkaline conditions[J]. Journal of Environmental Sciences, 2019, 78: 287-292. |
5 | 陈昌明. 皖南地区大型韧性剪切带及其与金成矿作用关系研究[D]. 武汉: 中国地质大学, 2016. |
ChenC M. Study on the large ductile shear zone in Southern Anhui and its relationship with gold mineralization[D]. Wuhan: China University of Geosciences, 2016. | |
6 | TekoumL. 乍得共和国西南部Mayo Kebbi地区金镍矿床成矿作用研究[D]. 长春: 吉林大学, 2014. |
TekoumL. Study on metallogeny of gold and nickel deposit in Mayo Kebbi, Southwestern Chad[D]. Changchun: Jilin University, 2014. | |
7 | 王守敬. 新疆天格尔金矿带含金剪切带型金矿成矿作用研究[D]. 西安: 西北大学, 2008. |
WangS J. The mineralization of gold deposits related to shear zone in Tianger gold deposits belt, Xinjiang[D]. Xi an: Northwest University, 2008. | |
8 | ZhouC D, ChinD T. Copper recovery and cyanide destruction with a plating barrel cathode and a packed- bed anode[J]. Plating and Surface Finishing, 1993, 80(6): 69-77. |
9 | DutraA J B, RochaG P, PomboF R. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte[J]. Journal of Hazardous Materials, 2008, 152(2): 648-655. |
10 | Felix-NavarroR M, LinS W, Castro-CecenaA B, et al. Cyanide destruction and simultaneous recovery of copper with an electrochemical reactor[J]. Journal of the Electrochemical Society, 2003.150(8): 149-154. |
11 | YngardR A, SharmaV K, FilipJ, et al. Ferrate(Ⅵ) oxidation of weak-acid dissociable cyanides[J]. Environmental Science and Technology, 2008, 42(8): 3005-3010. |
12 | AkcilA, MudderT. Microbial destruction of cyanide wastes in gold mining: process review[J]. Biotechnology Letters, 2003, 25(6): 445-450. |
13 | WhiteD M, LilonT A, WoolardC. Biological treatment of cyanide containing wastewater[J]. Water Research, 2000, 34(7): 2105-2109. |
14 | SirianuntapiboonS, ChairattanawanK, RarunroengM. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system[J]. Journal of Hazardous Materials, 2008, 154: 526-534. |
15 | KogerS, BockhornH, MackieJ C. NOx formation from ammonia, hydrogen cyanide, pyrrole, and caprolactam under incinerator conditions[C]//Proceedings of the Combustion Institute -Thirtieth International Symposium on Combustion, 2005: 1201-1209. |
16 | 李社红, 郑宝山, 朱建明, 等. 金矿尾矿渣及其污染土壤中氰化物的分布及自然降解[J]. 环境科学, 2001, 22(3): 126-128. |
LiS H, ZhengB S, ZhuJ M, et al. The distribution and natural degradation of cyanide in goldmine waste-solid and polluted soil[J]. Environmental Science, 2001, 22(3): 126-128. | |
17 | 王秀芹. 氰化物在不同环境中的自然降解规律研究[J]. 湖北第二师范学院学报, 2014, 31(8): 59-61. |
WangX Q. Study on the natural degradation regularity of cyanide in different environments[J]. Journal of Hubei University of Education, 2014, 31(8): 59-61. | |
18 | SimovicL, SnodgrassW J, MurphyK L, et al. Development of a model to describe the natural degradation of cyanide in gold mill effluents[C]//Cyanide and the Environment Proceedings of a Conference. Tucson Ariz, 1984. |
19 | CastriK F, MeDevittD A, CastricP A. Influence of aeration on hydrogen cyanide biosynthesis by Pseudomonas aeruginosa[J]. Current Microbiology, 1981, 5(4): 223-226. |
20 | 张朝晖, 刘佰龙, 巨建涛, 等. 氰化提金尾渣矿物特性与热性质研究[J]. 化工生产与技术, 2010, 17(6): 20-24. |
ZhangC H, LiuB L, JuJ T, et al. Mineralogical characteristic and thermal properties on cyaniding extraction tailings of gold[J]. Chemical Production and Technology, 2010, 17(6): 20-24. | |
21 | 赵军, 张兴凯, 王云海. 硫铁矿的比表面积、孔体积及其对硫铁矿吸附能力的影响研究[J]. 中国安全生产科学技术, 2008, (4): 119-121. |
ZhaoJ, ZhangX K, WangY H. Influence of specific surface area and pore volume of iron pyrites on adsorption capacity[J]. Journal of Safety Science and Technology, 2008, (4): 119-121. | |
22 | 李培铮.黄金生产加工技术大全[M].长沙: 中南工业大学出版社, 1995: 304-307. |
LiP Z. Encyclopedia of Gold Production and Processing Technology [M]. Changsha: Central South University of Technology Press, 1995: 304-307. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[7] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[8] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[9] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[10] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[11] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[12] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[13] |
Wan XU, Zhenbin CHEN, Huijuan ZHANG, Fangfang NIU, Ting HUO, Xingsheng LIU.
Study on synthesis, adsorption and desorption performance of linear temperature-sensitive segment polymer regulated intelligent |
[14] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||