CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4238-4246.DOI: 10.11949/0438-1157.20190272
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wei YU1(),Huitao WANG1(),Jianjun WANG1,Daofei ZHU1,Shuai TAO1,Zhong GE2,Jinglun HUANG1,Lingling ZHAO1
Received:
2019-03-21
Revised:
2019-06-27
Online:
2019-11-05
Published:
2019-11-05
Contact:
Huitao WANG
余伟1(),王辉涛1(),王建军1,朱道飞1,陶帅1,葛众2,黄靖伦1,赵玲玲1
通讯作者:
王辉涛
作者简介:
余伟(1995—),男,硕士研究生,基金资助:
CLC Number:
Wei YU, Huitao WANG, Jianjun WANG, Daofei ZHU, Shuai TAO, Zhong GE, Jinglun HUANG, Lingling ZHAO. Performance optimization of ORC steam generator based on the second law of thermodynamics[J]. CIESC Journal, 2019, 70(11): 4238-4246.
余伟, 王辉涛, 王建军, 朱道飞, 陶帅, 葛众, 黄靖伦, 赵玲玲. 基于热力学第二定律的ORC蒸气发生器性能优化[J]. 化工学报, 2019, 70(11): 4238-4246.
Add to citation manager EndNote|Ris|BibTeX
参数 | 值 |
---|---|
换热管壁厚δ/m | 0.003 |
管壁热导率λwall/(W/(m·K)) | 45 |
局部阻力及质量力附加系数 | 0.25 |
环境温度Tsurr/℃ | 20 |
Table 1 Parameter settings
参数 | 值 |
---|---|
换热管壁厚δ/m | 0.003 |
管壁热导率λwall/(W/(m·K)) | 45 |
局部阻力及质量力附加系数 | 0.25 |
环境温度Tsurr/℃ | 20 |
1 | 王华, 王辉涛.低温余热发电有机朗肯循环技术[M].北京: 科学出版社, 2010. |
WangH, WangH T. Low Temperature Waste Heat Power Generation Organic Rankine Cycle Technology[M]. Beijing: Science Press, 2010. | |
2 | YangF B, ChoH J, ZhangH G, et al. Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery[J].Appl. Energy, 2017, 205(11): 1100-1118. |
3 | KhanM N, TliliI. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: energy and exergy analysis[J].Energy Rep., 2018, 4(11): 497-506. |
4 | LuciaU. Entropy and exergy in irreversible renewable energy systems[J].Renew. Sustain. Energy Rev., 2013, 20(4): 559-564. |
5 | BraccoS, SiriS. Exergetic optimization of single level combined gas–steam power plants considering different objective functions[J]. Energy, 2010, 35(12): 5365-5373. |
6 | MansouriM T, AhmadiP, KaviriA G, et al. Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants[J]. Energy Convers. Manage., 2012, 58(6): 47-58. |
7 | KaviriA G, JaafarM N M, LazimT M. Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm[J]. Energy Convers. Manage., 2012, 58(6): 94-103. |
8 | González-GómezP A, Gómez-HernándezJ, BriongosJ V, et al. Thermo-economic optimization of molten salt steam generators[J]. Energy Conversion and Management, 2017, 146(8): 228-243. |
9 | BahmanyarM E, TalebiS. A performance analysis of vertical steam generator using an entropy generation method[J]. Annals of Nuclear Energy, 2019, 125(3): 212-221. |
10 | MehrgooM, AmidpourM. Constructal design and optimization of a dual pressure heat recovery steam generator[J]. Energy, 2017, 124(4): 87-99. |
11 | PizzolatoA, DonatoF, VerdaV, et al. CSP plants with thermocline thermal energy storage and integrated steam generator—techno-economic modeling and design optimization[J]. Energy, 2017, 139(11): 231-246. |
12 | MehrgooM, AmidpourM. Configurations and pressure levels optimization of heat recovery steam generator using the genetic algorithm method based on the constructal design[J]. Applied Thermal Engineering, 2017, 122(7): 601-617. |
13 | LiJ B, WangK Y, ChengL. Experiment and optimization of a new kind once-through heat recovery steam generator (HRSG) based on analysis of exergy and economy[J]. Applied Thermal Engineering, 2017, 120(6): 402-415. |
14 | AmiralipourM, KouhikamaliR. Potential analysis and technical-economic optimization of conversion of steam power plant into combined water and power[J]. Applied Thermal Engineering, 2019, 151(3): 191-198. |
15 | NikbakhtN S, MehrpanahiA, AhmadiG. Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications[J]. Energy, 2018, 159(9): 277-293. |
16 | MooreF P, MartinL L. A nonlinear nonconvex minimum total heat transfer area formulation for ocean thermal energy conversion (OTEC) systems[J]. Applied Thermal Engineering, 2008, 28(8/9): 1015-1021. |
17 | FrancoA, GianniniG. A general method for the optimum design of heat recovery steam generators[J]. Energy, 2006, 31(12): 3342-3361. |
18 | BehzadiA, GholamianE, HoushfarE, et al. Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran s waste-to-energy plant integrated with an ORC unit[J]. Energy, 2018, 16(10): 1055-1068. |
19 | YangF B, ZhangH G, YuZ B, et al. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery[J]. Energy, 2017, 118(1): 753-775. |
20 | ManassaldiJ, MussatiS, ScennaN. Optimal synthesis and design of heat recovery steam generation (HRSG) via mathematical programming[J]. Energy, 2011, 36(1): 475-485. |
21 | RezaieA, TsatsaronisG, HellwigU. Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm[J]. Energy, 2019, 168(2): 346-357. |
22 | WangE H, ZhangH G, ZhaoY, et al. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine[J]. Energy, 2013, 43(7): 385-395. |
23 | YaoB F, YangF B, ZhangH G, et al. Analyzing the performance of a dual loop organic Rankine cycle system for waste heat recovery of a heavy-duty compressed natural gas engine[J]. Energies, 2014, 11(7): 7794-7815. |
24 | LiJ, GeZ, DuanY Y, et al. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles[J]. Applied Energy, 2018, 217(5): 409-421. |
25 | UsmanM, ImranM, YangY, et al. Thermo-economic comparison of air-cooled and cooling tower based organic Rankine cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions[J]. Energy, 2017, 123(3): 353-366. |
26 | 杨世铭, 陶文铨.传热学[M].北京: 高等教育出版社, 2006. |
YangS M, TaoW Q. Heat Transfer[M]. Beijing: Higher Education Press, 2006. | |
27 | Vakili-FarahaniF, AgostiniB, ThomeJ R. Experimental study on flow boiling heat transfer of multiport tubes with R245fa and R1234ze(E)[J]. International Journal of Refrigeration, 2013, 36(2): 335-352. |
28 | 葛众.抛物面槽式太阳能直接汽化有机朗肯循环系统热力性能的研究[D].昆明: 昆明理工大学, 2016. |
GeZ. Study on thermal performance of parabolic trough directly vaporized organic Rankine cycle system[D]. Kunming: Kunming University of Science and Technology, 2016. | |
29 | DittusF W, BoelterL M K. Publication in Engineering[M]. Berkley: University of California, 1930. |
30 | CristianoB T, GherhardtR. Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2459-2468. |
31 | 黄晓艳, 王华, 王辉涛.R245fa传热特性的实验研究[J].武汉理工大学学报, 2011, 33(3): 67-71. |
HuangX Y, WangH, WangH T. Experimental study on heat transfer characteristics of R245fa[J]. Journal of Wuhan University of Technology, 2011, 33(3): 67-71. | |
32 | LiuZ, WintertonR H S. Ageneral correlation for saturated and subcooled flow boiling and tubes and annuli based on a nucleate pool boiling[J]. International Journal of Heat and Mass transfer, 1991, 34(11): 2759-2765. |
33 | 鲁钟琪. 两相流与沸腾传热[M]. 北京: 清华大学出版社, 2002. |
LuZ Q. Two-phase Flow and Boiling Heat Transfer[M]. Beijing: Tsinghua University Press, 2002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||