CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3094-3103.DOI: 10.11949/0438-1157.20190310
Previous Articles Next Articles
Haonan WANG(),Weiwei XUAN(),Dehong XIA
Received:
2019-04-01
Revised:
2019-05-09
Online:
2019-08-05
Published:
2019-08-05
Contact:
Weiwei XUAN
通讯作者:
玄伟伟
作者简介:
王浩男(1994—),男,硕士研究生,<email>s20170164@xs.ustb.edu.cn</email>
基金资助:
CLC Number:
Haonan WANG, Weiwei XUAN, Dehong XIA. Structural evolution of coal ash slag at different temperatures[J]. CIESC Journal, 2019, 70(8): 3094-3103.
王浩男, 玄伟伟, 夏德宏. 不同温度下煤灰熔渣的结构演变规律[J]. 化工学报, 2019, 70(8): 3094-3103.
Add to citation manager EndNote|Ris|BibTeX
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
YZ | 40.41 | 16.58 | 26.14 | 13.77 | 1.73 | 0.65 | 0.23 | 0.48 |
YZ# | 40.41 | 16.58 | 26.14 | 13.77 | 0 | 0 | 0 | 0 |
初始 | 40 | 20 | 25 | 15 | 0 | 0 | 0 | 0 |
Table 1 Chemical composition of coal ash/%
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
YZ | 40.41 | 16.58 | 26.14 | 13.77 | 1.73 | 0.65 | 0.23 | 0.48 |
YZ# | 40.41 | 16.58 | 26.14 | 13.77 | 0 | 0 | 0 | 0 |
初始 | 40 | 20 | 25 | 15 | 0 | 0 | 0 | 0 |
温度 | 氧化物/% | Fe3+/Fe2+ | ||||
---|---|---|---|---|---|---|
SiO2(g) | Al2O3(g) | Fe2O3(g) | FeO(g) | CaO(g) | ||
初始 | 40 | 20 | 25 | 0 | 15 | 0 |
1400℃ | 40 | 20 | 14.84 | 9.14 | 15 | 1.44 |
1450℃ | 40 | 20 | 13.09 | 10.72 | 15 | 1.08 |
1500℃ | 40 | 20 | 11.41 | 12.23 | 15 | 0.85 |
1550℃ | 40 | 20 | 9.86 | 13.63 | 15 | 0.64 |
1600℃ | 40 | 20 | 8.49 | 14.86 | 15 | 0.52 |
1650℃ | 40 | 20 | 7.31 | 15.92 | 15 | 0.41 |
1700℃ | 40 | 20 | 6.32 | 16.81 | 15 | 0.33 |
1750℃ | 40 | 20 | 5.49 | 17.56 | 15 | 0.28 |
1800℃ | 40 | 20 | 4.79 | 18.18 | 15 | 0.23 |
Table 2 Melt composition at different temperatures
温度 | 氧化物/% | Fe3+/Fe2+ | ||||
---|---|---|---|---|---|---|
SiO2(g) | Al2O3(g) | Fe2O3(g) | FeO(g) | CaO(g) | ||
初始 | 40 | 20 | 25 | 0 | 15 | 0 |
1400℃ | 40 | 20 | 14.84 | 9.14 | 15 | 1.44 |
1450℃ | 40 | 20 | 13.09 | 10.72 | 15 | 1.08 |
1500℃ | 40 | 20 | 11.41 | 12.23 | 15 | 0.85 |
1550℃ | 40 | 20 | 9.86 | 13.63 | 15 | 0.64 |
1600℃ | 40 | 20 | 8.49 | 14.86 | 15 | 0.52 |
1650℃ | 40 | 20 | 7.31 | 15.92 | 15 | 0.41 |
1700℃ | 40 | 20 | 6.32 | 16.81 | 15 | 0.33 |
1750℃ | 40 | 20 | 5.49 | 17.56 | 15 | 0.28 |
1800℃ | 40 | 20 | 4.79 | 18.18 | 15 | 0.23 |
原子对 | 电荷 | Aij /eV | ρij /? | Cij /eV |
---|---|---|---|---|
Si-O | +1.8900 | 50307.43 | 0.161 | 46.30 |
Al-O | +1.4175 | 28539.14 | 0.172 | 34.58 |
Fe3+-O | +1.4175 | 8020.47 | 0.190 | 0 |
Fe2+-O | +0.9450 | 13033.26 | 0.190 | 0 |
Ca-O | +0.9450 | 155671.64 | 0.178 | 42.26 |
O-O | -0.9450 | 9023.03 | 0.265 | 85.09 |
Table 3 Related parameters of BMH potential function[22]
原子对 | 电荷 | Aij /eV | ρij /? | Cij /eV |
---|---|---|---|---|
Si-O | +1.8900 | 50307.43 | 0.161 | 46.30 |
Al-O | +1.4175 | 28539.14 | 0.172 | 34.58 |
Fe3+-O | +1.4175 | 8020.47 | 0.190 | 0 |
Fe2+-O | +0.9450 | 13033.26 | 0.190 | 0 |
Ca-O | +0.9450 | 155671.64 | 0.178 | 42.26 |
O-O | -0.9450 | 9023.03 | 0.265 | 85.09 |
键 | 键长/? | ||||
---|---|---|---|---|---|
MD | Ref.[24] | Ref.[25] | Ref.[27] | Ref.[22] | |
Si—O | 1.629 | 1.62~1.65 | 1.63 | — | 1.62~1.63 |
Al—O | 1.742 | 1.74~1.78 | 1.77~1.78 | — | 1.74~1.76 |
Fe3+—O | 1.842 | — | — | — | 1.82~1.84 |
Fe2+—O | 2.067 | — | — | 2.04~2.09 | 2.00~2.08 |
Ca—O | 2.382 | 2.30~2.36 | — | — | 2.37~2.40 |
Table 4 Comparison of bond length value between data calculated by MD and references
键 | 键长/? | ||||
---|---|---|---|---|---|
MD | Ref.[24] | Ref.[25] | Ref.[27] | Ref.[22] | |
Si—O | 1.629 | 1.62~1.65 | 1.63 | — | 1.62~1.63 |
Al—O | 1.742 | 1.74~1.78 | 1.77~1.78 | — | 1.74~1.76 |
Fe3+—O | 1.842 | — | — | — | 1.82~1.84 |
Fe2+—O | 2.067 | — | — | 2.04~2.09 | 2.00~2.08 |
Ca—O | 2.382 | 2.30~2.36 | — | — | 2.37~2.40 |
氧的类型 | 温度/oC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 | 1750 | 1800 | ||
BO | SiOSi | 21.81 | 21.98 | 21.98 | 23.11 | 21.74 | 22.00 | 22.09 | 21.61 | 22.77 |
SiOAl | 26.03 | 26.26 | 26.36 | 25.94 | 24.93 | 26.29 | 26.33 | 26.02 | 24.26 | |
SiO3Fe① | 8.34 | 7.11 | 6.70 | 4.96 | 4.97 | 4.45 | 3.53 | 3.26 | 2.76 | |
AlOAl | 5.38 | 4.96 | 5.29 | 5.35 | 5.11 | 5.28 | 5.09 | 5.40 | 5.38 | |
AlO3Fe | 3.15 | 3.14 | 2.57 | 2.19 | 1.79 | 1.53 | 1.37 | 1.16 | 1.15 | |
3FeO3Fe | 0.46 | 0.46 | 0.34 | 0.26 | 0.22 | 0.17 | 0.15 | 0.11 | 0.06 | |
TO | SiSiSi | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 |
SiSiAl | 0.27 | 0.24 | 0.32 | 0.29 | 0.38 | 0.30 | 0.35 | 0.46 | 0.33 | |
SiSi3Fe | 0.15 | 0.10 | 0.15 | 0.11 | 0.11 | 0.08 | 0.08 | 0.05 | 0.05 | |
SiAlAl | 0.74 | 0.91 | 0.68 | 0.91 | 0.88 | 0.95 | 0.83 | 0.99 | 0.98 | |
SiAl3Fe | 0.71 | 0.60 | 0.47 | 0.47 | 0.44 | 0.40 | 0.32 | 0.28 | 0.23 | |
Si3Fe3Fe | 0.14 | 0.10 | 0.12 | 0.08 | 0.06 | 0.04 | 0.03 | 0.01 | 0.02 | |
AlAlAl | 0.37 | 0.37 | 0.31 | 0.33 | 0.48 | 0.46 | 0.38 | 0.40 | 0.43 | |
AlAl3Fe | 0.48 | 0.40 | 0.29 | 0.35 | 0.19 | 0.16 | 0.14 | 0.11 | 0.13 | |
Al3Fe3Fe | 0.17 | 0.17 | 0.10 | 0.08 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | |
3Fe3Fe3Fe | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
NBO | SiO | 22.04 | 22.70 | 24.24 | 24.75 | 27.09 | 26.82 | 27.41 | 28.25 | 29.36 |
AlO | 6.12 | 6.67 | 6.68 | 7.19 | 7.51 | 7.28 | 8.03 | 7.87 | 8.18 | |
3FeO | 1.72 | 1.86 | 1.48 | 1.40 | 1.36 | 1.18 | 1.17 | 1.02 | 0.82 | |
FO | FO | 1.88 | 1.94 | 1.88 | 2.21 | 2.67 | 2.57 | 2.66 | 2.92 | 3.03 |
Table 5 Oxygen coordination
氧的类型 | 温度/oC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 | 1750 | 1800 | ||
BO | SiOSi | 21.81 | 21.98 | 21.98 | 23.11 | 21.74 | 22.00 | 22.09 | 21.61 | 22.77 |
SiOAl | 26.03 | 26.26 | 26.36 | 25.94 | 24.93 | 26.29 | 26.33 | 26.02 | 24.26 | |
SiO3Fe① | 8.34 | 7.11 | 6.70 | 4.96 | 4.97 | 4.45 | 3.53 | 3.26 | 2.76 | |
AlOAl | 5.38 | 4.96 | 5.29 | 5.35 | 5.11 | 5.28 | 5.09 | 5.40 | 5.38 | |
AlO3Fe | 3.15 | 3.14 | 2.57 | 2.19 | 1.79 | 1.53 | 1.37 | 1.16 | 1.15 | |
3FeO3Fe | 0.46 | 0.46 | 0.34 | 0.26 | 0.22 | 0.17 | 0.15 | 0.11 | 0.06 | |
TO | SiSiSi | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 |
SiSiAl | 0.27 | 0.24 | 0.32 | 0.29 | 0.38 | 0.30 | 0.35 | 0.46 | 0.33 | |
SiSi3Fe | 0.15 | 0.10 | 0.15 | 0.11 | 0.11 | 0.08 | 0.08 | 0.05 | 0.05 | |
SiAlAl | 0.74 | 0.91 | 0.68 | 0.91 | 0.88 | 0.95 | 0.83 | 0.99 | 0.98 | |
SiAl3Fe | 0.71 | 0.60 | 0.47 | 0.47 | 0.44 | 0.40 | 0.32 | 0.28 | 0.23 | |
Si3Fe3Fe | 0.14 | 0.10 | 0.12 | 0.08 | 0.06 | 0.04 | 0.03 | 0.01 | 0.02 | |
AlAlAl | 0.37 | 0.37 | 0.31 | 0.33 | 0.48 | 0.46 | 0.38 | 0.40 | 0.43 | |
AlAl3Fe | 0.48 | 0.40 | 0.29 | 0.35 | 0.19 | 0.16 | 0.14 | 0.11 | 0.13 | |
Al3Fe3Fe | 0.17 | 0.17 | 0.10 | 0.08 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | |
3Fe3Fe3Fe | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
NBO | SiO | 22.04 | 22.70 | 24.24 | 24.75 | 27.09 | 26.82 | 27.41 | 28.25 | 29.36 |
AlO | 6.12 | 6.67 | 6.68 | 7.19 | 7.51 | 7.28 | 8.03 | 7.87 | 8.18 | |
3FeO | 1.72 | 1.86 | 1.48 | 1.40 | 1.36 | 1.18 | 1.17 | 1.02 | 0.82 | |
FO | FO | 1.88 | 1.94 | 1.88 | 2.21 | 2.67 | 2.57 | 2.66 | 2.92 | 3.03 |
1 | 袁悦婷, 袁秋华, 李伟斌, 等 . 煤气化技术及气化炉实际应用现状综述[J]. 化工设计通讯, 2019, 45(1): 15+44. |
Yuan Y T , Yuan Q H , Li W B , et al . Summary of actual application status of coal gasification technology and gasifier[J]. Chemical Engineering Design Communications, 2019, 45(1): 15+44. | |
2 | 王殿生 .大型煤气化技术的研究与发展[J]. 化工设计通讯, 2018, 44(2): 11. |
Wang D S . Research and development of large-scale coal gasification technology[J]. Chemical Engineering Design Communications, 2018, 44(2): 11. | |
3 | 李文, 白进 . 煤的灰化学[M]. 北京: 科学出版社, 2013. |
Li W , Bai J . Coal Ash Chemistry[M]. Beijing: Science Press, 2013. | |
4 | Liao J , Zhang Y , Sridhar S , et al . Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags[J]. ISIJ International, 2012, 52(5): 753-758. |
5 | Zhang S , Zhang X , Liu W , et al . Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag[J]. Journal of Non-Crystalline Solids, 2014, 402: 214-222. |
6 | Wu T , He S , Liang Y , et al . Molecular dynamics simulation of the structure and properties for the CaO–SiO2 and CaO–Al2O3 systems[J]. Journal of Non-Crystalline Solids, 2015, 411: 145-151. |
7 | Xuan W , Zhang J , Xia D . The influence of MgO on the crystallization characteristics of synthetic coal slags[J]. Fuel, 2018, 222: 523-528. |
8 | Xuan W , Wang Q , Zhang J , et al . Influence of silica and alumina (SiO2+Al2O3) on crystallization characteristics of synthetic coal slags[J]. Fuel, 2017, 189: 39-45. |
9 | Xuan W , Whitty K J , Guan Q , et al . Influence of SiO2/Al2O3 on crystallization characteristics of synthetic coal slags[J]. Fuel, 2015, 144: 103-110. |
10 | Xuan W W , Wang H N , Xia D H . Deep structure analysis on coal slags with increasing silicon content and correlation with melt viscosity[J]. Fuel, 2019, 242: 362-367. |
11 | Xuan W W , Wang H N , Xia D H . Depolymerization mechanism of CaO on network structure of synthetic coal slags[J]. Fuel Process. Technol., 2019, 187: 21-27. |
12 | Wang C H , Lin X C , Sa-Sha Y , et al . Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeO x quaternary system[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1025-1033. |
13 | Knipping J L , Behrens H , Wilke M , et al . Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts[J]. Chemical Geology, 2015, 411: 143-154. |
14 | Lin X , Ideta K , Miyawaki J , et al . Correlation between fluidity properties and local structures of three typical Asian coal ashes[J]. Energy & Fuels, 2012, 26(4): 2136-2144. |
15 | Jiang Y , Lin X , Ideta K , et al . Microstructural transformations of two representative slags at high temperatures and effects on the viscosity[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1338-1345. |
16 | Bale C W , Bélisle E , Chartrand P , et al . FactSage thermochemical software and databases — recent developments[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33(2): 295-311. |
17 | 王锦团, 张乐, 任钟元, 等 . 气体混合炉中氧逸度控制[J]. 地球化学, 2016, 45: 475-485. |
Wang J T , Zhang L , Ren Z Y , et al . Oxygen fugacity control in gas mixing furnace[J]. Geochemistry, 2016, 45: 475-485. | |
18 | Jayasuriya K D , OʼNeill H , St C , Berry A J ,et al . A Mössbauer study of the oxidation state of Fe in silicate melts[J]. American Mineralogist, 2015, 89(11): 1597-1609 |
19 | Sack R O , Carmichael I S E , Rivers M , et al . Ferric-ferrous equilibria in natural silicate liquids at 1 bar[J]. Contributions to Mineralogy & Petrology, 1981, 75(4): 369-376. |
20 | Knipping J L , Behrens H , Wilke M , et al . Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts[J]. Chemical Geology, 2015, 411: 143-154. |
21 | Karalis K T , Dellis D , Antipas G S E , et al . Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag[J]. Scientific Reports, 2016, 6: 30216. |
22 | Guillot B , Sator N . A computer simulation study of natural silicate melts (Ⅰ): Low pressure properties[J]. Geochimica et Cosmo-chimica Acta, 2007, 71(5): 1249-1265. |
23 | 严六明, 朱素华 . 分子动力学模拟的理论与实践[M]. 北京: 科学出版社, 2013. |
Yan L M , Zhu S H . Theory and Practice of Molecular Dynamics Simulation[M]. Beijing: Science Press, 2013 | |
24 | Hennet L , Drewitt J W E , Neuville D R , et al . Neutron diffraction of calcium aluminosilicate glasses and melts[J]. Journal of Non-Crystalline Solids, 2016, 451: 89-93. |
25 | Wagner J , Haigis V , Leydier M , et al . The structure of Y- and La-bearing aluminosilicate glasses and melts: a combined molecular dynamics and diffraction study[J]. Chemical Geology, 2016, 461: 23-33. |
26 | Wu T , Wang Q , Yu C , et al . Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. Journal of Non-Crystalline Solids, 2016, 450: 23-31. |
27 | 徐利莹, 王秀丽, 吴永全, 等 . 铝硅酸钙熔体中氧原子的配位性质及动力学[J]. 硅酸盐学报, 2006, (9): 1117-1123. |
Xu L Y , Wang X L , Wu Y Q , et al . Coordination properties and kinetics of oxygen atoms in calcium aluminosilicate melts[J]. Journal of Silicate, 2006, (9): 1117-1123. | |
28 | Mills K C , Hayashi M , Wang L , et al . Chapter 2.2—the structure and properties of silicate slags[J]. Treatise on Process Metallurgy, 2014, 14(8): 149-286. |
29 | Mills K C . The estimation of slag properties[D]. London: Imperial College, 2011. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[6] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[13] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||