CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4590-4598.DOI: 10.11949/0438-1157.20190377
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Haiyan ZHANG1,2(),Jiangfeng GUO1,2(),Xiulan HUAI1,2,Xinying CUI1,2
Received:
2019-04-11
Revised:
2019-09-16
Online:
2019-12-05
Published:
2019-12-05
Contact:
Jiangfeng GUO
张海燕1,2(),郭江峰1,2(),淮秀兰1,2,崔欣莹1,2
通讯作者:
郭江峰
作者简介:
张海燕(1994—),女,博士研究生,基金资助:
CLC Number:
Haiyan ZHANG, Jiangfeng GUO, Xiulan HUAI, Xinying CUI. Investigations of axial conduction effect on local heat transfer performance in PCHE[J]. CIESC Journal, 2019, 70(12): 4590-4598.
张海燕, 郭江峰, 淮秀兰, 崔欣莹. PCHE内轴向导热对局部换热性能的影响研究[J]. 化工学报, 2019, 70(12): 4590-4598.
Add to citation manager EndNote|Ris|BibTeX
Case No. | D/mm | t f /D | t p /D | 入口温度/K | |
---|---|---|---|---|---|
热侧 | 冷侧 | ||||
1 | 0.8 | 0.5 | 0.5 | 390.15 | 295.15 |
2 | 1.2 | 0.5 | 0.5 | 390.15 | 295.15 |
3 | 1.6 | 0.5 | 0.5 | 390.15 | 295.15 |
4 | 1.6 | 0.5 | 0.5 | 415.15 | 290.15 |
5 | 1.6 | 0.5 | 0.5 | 440.15 | 285.15 |
6 | 1.6 | 0.5 | 1 | 390.15 | 295.15 |
7 | 1.6 | 1 | 0.5 | 390.15 | 295.15 |
Table 1 Detailed sizes and boundary conditions of different structures
Case No. | D/mm | t f /D | t p /D | 入口温度/K | |
---|---|---|---|---|---|
热侧 | 冷侧 | ||||
1 | 0.8 | 0.5 | 0.5 | 390.15 | 295.15 |
2 | 1.2 | 0.5 | 0.5 | 390.15 | 295.15 |
3 | 1.6 | 0.5 | 0.5 | 390.15 | 295.15 |
4 | 1.6 | 0.5 | 0.5 | 415.15 | 290.15 |
5 | 1.6 | 0.5 | 0.5 | 440.15 | 285.15 |
6 | 1.6 | 0.5 | 1 | 390.15 | 295.15 |
7 | 1.6 | 1 | 0.5 | 390.15 | 295.15 |
序号 | 网格数 | 壁面y + | 出口壁温值/K | 相对误差/% | |||
---|---|---|---|---|---|---|---|
热侧 | 冷侧 | 热侧 | 冷侧 | 热侧 | 冷侧 | ||
1 | 287292 | 2.43 | 2.26 | 296.47 | 365.13 | 0.064 | 0.637 |
2 | 516912 | 1.84 | 1.59 | 296.39 | 366.02 | 0.037 | 0.395 |
3 | 840516 | 1.06 | 0.83 | 296.31 | 367.18 | 0.010 | 0.079 |
4 | 1150720 | 0.71 | 0.51 | 296.28 | 367.47 | 0 | 0 |
Table 2 Grid independence test
序号 | 网格数 | 壁面y + | 出口壁温值/K | 相对误差/% | |||
---|---|---|---|---|---|---|---|
热侧 | 冷侧 | 热侧 | 冷侧 | 热侧 | 冷侧 | ||
1 | 287292 | 2.43 | 2.26 | 296.47 | 365.13 | 0.064 | 0.637 |
2 | 516912 | 1.84 | 1.59 | 296.39 | 366.02 | 0.037 | 0.395 |
3 | 840516 | 1.06 | 0.83 | 296.31 | 367.18 | 0.010 | 0.079 |
4 | 1150720 | 0.71 | 0.51 | 296.28 | 367.47 | 0 | 0 |
项目 | 温度变化值 /K | 压降值 /Pa | ||
---|---|---|---|---|
热侧 | 冷侧 | 热侧 | 冷侧 | |
实验结果 | 169.6 | 140.38 | 24180 | 73220 |
数值结果 | 170.58 | 137.286 | 26152.8 | 76000.5 |
相对误差/% | 0.58 | 2.20 | 8.16 | 3.80 |
Table 3 Comparison between numerical results and experimental results by Ishizuka[8]
项目 | 温度变化值 /K | 压降值 /Pa | ||
---|---|---|---|---|
热侧 | 冷侧 | 热侧 | 冷侧 | |
实验结果 | 169.6 | 140.38 | 24180 | 73220 |
数值结果 | 170.58 | 137.286 | 26152.8 | 76000.5 |
相对误差/% | 0.58 | 2.20 | 8.16 | 3.80 |
Fig.4 Relations of local convective heat transfer coefficient h(a), heat transfer entropy generation number Ns 1 ,T (b) and axial wall conduction number M c (c) with bulk temperature with different wall thicknesses
Fig.5 Local heat flux q(a), convective heat transfer coefficient h (b), heat transfer entropy generation number Ns 1 ,T (c) and axial wall conduction number M c (d) with different diameters
Fig.6 Local heat flux q(a), convective heat transfer coefficient h(b), heat transfer entropy generation number Ns 1 ,T (c) and axial wall conduction number M c (d) with different inlet temperature difference between two sides
1 | Ma T , Chu W X , Xu X Y , et al . An experimental study on heat transfer between supercritical carbon dioxide and water near the pseudo-critical temperature in a double pipe heat exchanger [J]. Int. J. Heat Mass Transfer, 2016, 93: 379-387. |
2 | Xu R N , Luo F , Jiang P X . Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements [J]. Int. J. Heat Mass Transfer, 2017, 110: 576-586. |
3 | Ma Y T , Liu Z Y , Tian H . A review of transcritical carbon dioxide heat pump and refrigeration cycles [J]. Energy, 2013, 55: 156-172. |
4 | Turchi C S , Ma Z , Neises T W , et al . Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems [J]. J. Sol. Energy. Eng., 2013, 135(4): 041007. |
5 | Dostál V , Driscoll M , Hejzlar P . A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors [M]. MIT, 2004, |
6 | Haynes B S , Johnston A M T . High-effectiveness micro-exchanger performance [C]// AIChE 2002 Spring National Meeting. 2002. |
7 | Li Q , Flamant G , Yuan X , et al . Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers [J]. Renewable Sustainable Energy Rev., 2011, 15(9): 4855-4875. |
8 | Ishizuka T . Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop [C]//Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics. 2005. |
9 | Ngo T L , Kato Y , Nikitin K , et al . New printed circuit heat exchanger with S-shaped fins for hot water supplier [J]. Exp. Therm. Fluid Sci., 2006, 30(8): 811-819. |
10 | Kim D E , Kim M H , Cha J E , et al . Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model [J]. Nucl. Eng. Des., 2008, 238(12): 3269-3276. |
11 | Pieve M . A Calculation method for the optimized thermal-fluid dynamic sizing of heat exchangers [J]. Heat Transfer Eng., 2008, 29(6): 556-564. |
12 | Aneesh A M , Sharma A , Srivastava A , et al . Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger (PCHE) [J]. Int. J. Heat Mass Transfer, 2018, 118: 304-315. |
13 | Cui X , Guo J , Huai X , et al . Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2 [J]. Int. J. Heat Mass Transfer, 2018, 121: 354-366. |
14 | 褚雯霄, 李雄辉, 马挺, 等 . 不同肋片结构的印刷电路板换热器传热与阻力特性 [J]. 科学通报, 2017, 62(16): 1788-1794. |
Chu W X , Li X H , Ma T , et al . Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures[J]. Chin. Sci. Bull., 2017, 62(16): 1788–1794. | |
15 | Kim T H , Kwon J G , Yoon S H , et al . Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle [J]. Nucl. Eng. Des., 2015, 288: 110-118. |
16 | Meshram A , Jaiswal A K , Khivsara S D , et al . Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications [J]. Appl. Therm. Eng., 2016, 109: 861-870. |
17 | Baik Y J , Jeon S , Kim B , et al . Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors [J]. Int. J. Heat Mass Transfer, 2017, 114: 809-815. |
18 | Lee S M , Kim K Y . Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application [J]. J. Nucl. Sci. Technol., 2012, 49(3): 343-351. |
19 | Kwon J G , Kim T H , Park H S , et al . Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function [J]. Nucl. Eng. Des., 2016, 298: 192-200. |
20 | Kim S G , Lee Y , Ahn Y , et al . CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application [J]. Ann. Nucl. Energy, 2016, 92: 175-185. |
21 | Saeed M , Kim M H . Thermal and hydraulic performance of SCO2 PCHE with different fin configurations [J]. Appl. Therm. Eng., 2017, 127: 975-985. |
22 | Guo J , Huai X . Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. J. Heat Transfer-Trans. ASME, 2017, 139(6): 061801. |
23 | Tiselj I , Hetsroni G , Mavko B , et al . Effect of axial conduction on the heat transfer in micro-channels [J]. Int. J. Heat Mass Transfer, 2004, 47(12/13): 2551-2565. |
24 | Lin M , Wang Q W , Guo Z X . Investigation on evaluation criteria of axial wall heat conduction under two classical thermal boundary conditions [J]. Appl. Energy, 2016, 162: 1662-1669. |
25 | Maranzana G , Perry I , Maillet D . Mini- and micro-channels: influence of axial conduction in the walls [J]. Int. J. Heat Mass Transfer, 2004, 47(17/18): 3993-4004. |
26 | Hetsroni G , Mosyak A , Pogrebnyak E , et al . Heat transfer in micro-channels: comparison of experiments with theory and numerical results [J]. Int. J. Heat Mass Transfer, 2005, 48(25/26): 5580-5601. |
27 | 康蕊, 厉彦忠, 杨宇杰, 等 . 轴向导热对板翅式换热器传热性能的影响 [J]. 西安交通大学学报, 2017, 51(2): 140-148. |
Kang R , Li Y Z , Yang Y J , et al . Perfromance evaliuation of plate-fin heat exchanger considering effect fo axial heat conduction[J]. Journal of Xi an Jiaotong University, 2017, 51(2):140-148. | |
28 | Zhai L , Xu G , Quan Y , et al . Numerical analysis of the axial heat conduction with variable fluid properties in a forced laminar flow tube [J]. Int. J. Heat Mass Transfer, 2017, 114: 238-251. |
29 | Sadhu S , Ramgopal M , Bhattacharyya S . Steady-state analysis of a high-temperature natural circulation loop based on water-cooled supercritical CO2 [J]. J. Heat Transfer-Trans. ASME, 2018, 140(6): 062502. |
30 | Bejan A . Entropy Generation through Heat and Fluid Flow [M]. Wiley, 1982. |
31 | Ma T , Li L , Xu X Y , et al . Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature [J]. Energy Convers. Manage., 2015, 104: 55-66. |
32 | Guo J , Xu M , Cheng L . Second law analysis of curved rectangular channels [J]. Int. J. Therm. Sci., 2011, 50(5): 760-768. |
33 | Hesselgreaves J E . Rationalisation of second law analysis of heat exchangers [J]. Int. J. Heat Mass Transfer, 2000, 43: 4189-4204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||