CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 15-19.DOI: 10.11949/0438-1157.20190430
• Thermodynamics • Previous Articles Next Articles
Chenyang ZHU(),Feng YANG,Xiangyang LIU,Maogang HE()
Received:
2019-04-26
Revised:
2019-05-05
Online:
2019-09-06
Published:
2019-09-06
Contact:
Maogang HE
通讯作者:
何茂刚
作者简介:
朱晨阳(1992—),男,博士研究生,基金资助:
CLC Number:
Chenyang ZHU, Feng YANG, Xiangyang LIU, Maogang HE. Experimental study on isobaric specific heat capacities of methyl myristate at elevated pressures[J]. CIESC Journal, 2019, 70(S2): 15-19.
朱晨阳, 杨峰, 刘向阳, 何茂刚. 高压肉豆蔻酸甲酯比定压热容的实验测量[J]. 化工学报, 2019, 70(S2): 15-19.
p/MPa | T/K | cp/(J?g-1?K-1) | p/MPa | T/K | cp/(J?g-1?K-1) |
---|---|---|---|---|---|
0.11 | 323.20 | 2.11 | 0.12 | 363.22 | 2.22 |
4.98 | 323.21 | 2.11 | 4.94 | 363.22 | 2.22 |
10.11 | 323.20 | 2.11 | 10.07 | 363.22 | 2.21 |
14.94 | 323.20 | 2.11 | 15.08 | 363.22 | 2.21 |
20.11 | 323.21 | 2.10 | 20.07 | 363.22 | 2.21 |
24.91 | 323.21 | 2.10 | 24.90 | 363.22 | 2.21 |
0.15 | 333.20 | 2.13 | 0.12 | 373.21 | 2.25 |
5.00 | 333.21 | 2.13 | 4.97 | 373.22 | 2.25 |
9.93 | 333.22 | 2.13 | 10.06 | 373.22 | 2.25 |
14.93 | 333.22 | 2.13 | 15.11 | 373.22 | 2.24 |
19.94 | 333.22 | 2.13 | 20.16 | 373.22 | 2.24 |
25.10 | 333.23 | 2.13 | 25.12 | 373.22 | 2.24 |
0.14 | 343.18 | 2.16 | 0.12 | 383.21 | 2.28 |
5.02 | 343.19 | 2.16 | 5.05 | 383.22 | 2.28 |
10.04 | 343.20 | 2.16 | 10.10 | 383.22 | 2.28 |
14.95 | 343.20 | 2.15 | 15.13 | 383.23 | 2.27 |
20.05 | 343.21 | 2.15 | 19.97 | 383.23 | 2.27 |
24.90 | 343.22 | 2.15 | 25.03 | 383.23 | 2.26 |
0.13 | 353.19 | 2.19 | 0.12 | 393.25 | 2.32 |
4.99 | 353.20 | 2.19 | 4.96 | 393.26 | 2.31 |
10.00 | 353.20 | 2.18 | 10.15 | 393.25 | 2.31 |
14.97 | 353.21 | 2.18 | 15.14 | 393.26 | 2.30 |
20.05 | 353.21 | 2.18 | 20.01 | 393.26 | 2.30 |
24.94 | 353.22 | 2.18 | 24.97 | 393.25 | 2.29 |
Table 1 Isobaric specific heat capacities of methyl myristate
p/MPa | T/K | cp/(J?g-1?K-1) | p/MPa | T/K | cp/(J?g-1?K-1) |
---|---|---|---|---|---|
0.11 | 323.20 | 2.11 | 0.12 | 363.22 | 2.22 |
4.98 | 323.21 | 2.11 | 4.94 | 363.22 | 2.22 |
10.11 | 323.20 | 2.11 | 10.07 | 363.22 | 2.21 |
14.94 | 323.20 | 2.11 | 15.08 | 363.22 | 2.21 |
20.11 | 323.21 | 2.10 | 20.07 | 363.22 | 2.21 |
24.91 | 323.21 | 2.10 | 24.90 | 363.22 | 2.21 |
0.15 | 333.20 | 2.13 | 0.12 | 373.21 | 2.25 |
5.00 | 333.21 | 2.13 | 4.97 | 373.22 | 2.25 |
9.93 | 333.22 | 2.13 | 10.06 | 373.22 | 2.25 |
14.93 | 333.22 | 2.13 | 15.11 | 373.22 | 2.24 |
19.94 | 333.22 | 2.13 | 20.16 | 373.22 | 2.24 |
25.10 | 333.23 | 2.13 | 25.12 | 373.22 | 2.24 |
0.14 | 343.18 | 2.16 | 0.12 | 383.21 | 2.28 |
5.02 | 343.19 | 2.16 | 5.05 | 383.22 | 2.28 |
10.04 | 343.20 | 2.16 | 10.10 | 383.22 | 2.28 |
14.95 | 343.20 | 2.15 | 15.13 | 383.23 | 2.27 |
20.05 | 343.21 | 2.15 | 19.97 | 383.23 | 2.27 |
24.90 | 343.22 | 2.15 | 25.03 | 383.23 | 2.26 |
0.13 | 353.19 | 2.19 | 0.12 | 393.25 | 2.32 |
4.99 | 353.20 | 2.19 | 4.96 | 393.26 | 2.31 |
10.00 | 353.20 | 2.18 | 10.15 | 393.25 | 2.31 |
14.97 | 353.21 | 2.18 | 15.14 | 393.26 | 2.30 |
20.05 | 353.21 | 2.18 | 20.01 | 393.26 | 2.30 |
24.94 | 353.22 | 2.18 | 24.97 | 393.25 | 2.29 |
1 | Al-RabghiO M, BeiruttyM, AkyurtM, et al. Recovery and utilization of waste heat[J]. Heat Recovery Systems and CHP, 1993, 13(5): 463-470. |
2 | HungT C, ShaiT Y, WangS K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667. |
3 | WuP, YangC J. Identification and control of blast furnace gas top pressure recovery turbine unit[J]. ISIJ International, 2012, 52(1): 96-100. |
4 | XuC, CangD. A brief overview of low CO2 emission technologies for iron and steel making[J]. Journal of Iron and Steel Research, International, 2010, 17(3): 1-7. |
5 | TobiesenF A, SvendsenH F, MejdellT. Modeling of blast furnace CO2 capture using amine absorbents[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7811-7819. |
6 | PaivaA, CraveiroR, ArosoI, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1063-1071. |
7 | ShahidE M, JamalY. A review of biodiesel as vehicular fuel[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2484-2494. |
8 | 杨鑫. 己酸甲酯和醇混合燃料着火延迟反应机理的研究[D]. 上海: 上海交通大学, 2014. |
YangX. Experimental and kinetic modeling study on ignition delay of methyl hexanoate with n-butanol and ethanol[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
9 | NguyenT T X, NguyenHuynhD. Predicting the phase equilibria of esters/alcohols mixtures and biodiesel density from its fatty acid composition using the modified group-contribution PC-SAFT[J]. Fluid Phase Equilibria, 2018, 472: 128-146. |
10 | PaulyJ, KouakouA C, HabriouxM, et al. Heat capacity measurements of pure fatty acid methyl esters and biodiesels from 250 to 390 K[J]. Fuel, 2014, 137: 21-27. |
11 | van BommelM J, OonkH A J, van MiltenburgJ C. Heat capacity measurements of 13 methyl esters of n-carboxylic acids from methyl octanoate to methyl eicosanoate between 5 K and 350 K[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1036-1042. |
12 | ZaitsauD H, PaulechkaY U, BlokhinA V, et al. Thermodynamics of ethyl decanoate[J]. Journal of Chemical & Engineering Data, 2009, 54(11): 3026-3033. |
13 | van MiltenburgJ C, OonkH A J. Thermal properties of ethyl undecanoate and ethyl tridecanoate by adiabatic calorimetry[J]. Journal of Chemical & Engineering Data, 2005, 50(4): 1348-1352. |
14 | DzidaM, JężakS, SumaraJ, et al. High pressure physicochemical properties of biodiesel components used for spray characteristics in diesel injection systems[J]. Fuel, 2013, 111: 165-171. |
15 | DzidaM, JężakS, SumaraJ, et al. High-pressure physicochemical properties of ethyl caprylate and ethyl caprate[J]. Journal of Chemical & Engineering Data, 2013, 58(7): 1955-1962. |
16 | AissaM A, IvanisG R, RadovicI R, et al. Experimental investigation and modeling of thermophysical properties of pure methyl and ethyl esters at high pressures[J]. Energy & Fuels, 2017, 31(7): 7110-7122. |
17 | BogatishchevaN S, FaizullinM Z, NikitinE D. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components[J]. Russian Journal of Physical Chemistry A, 2017, 91(9): 1647-1653. |
18 | LiuX Y, HeM G, SuC, et al. Heat capacities of fatty acid methyl esters from 300 K to 380 K and up to 4.25 MPa[J]. Fuel, 2015, 157: 240-244. |
19 | LiuX Y, SuC, QiX T, et al. Isobaric heat capacities of ethyl heptanoate and ethyl cinnamate at pressures up to 16.3 MPa[J]. The Journal of Chemical Thermodynamics, 2016, 93: 70-74. |
20 | LiuX Y, ZhuC Y, SuC, et al. Isobaric molar heat capacities of binary mixtures containing methyl caprate and methyl laurate at pressures up to 16.2 MPa[J]. Thermochimica Acta, 2017, 651: 43-46. |
21 | SuC, ZhuC Y, YangF, et al. Isobaric molar heat capacity of ethyl octanoate and ethyl decanoate at pressures up to 24 MPa[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 2252-2256. |
22 | LiuX Y, ZhuC Y, YangF, et al. Experimental and correlational study of isobaric molar heat capacities of fatty acid esters: ethyl nonanoate and ethyl dodecanoate[J]. Fluid Phase Equilibria, 2019, 479: 47-51. |
23 | ZhuC, YangF, LiuX, et al. Isobaric molar heat capacities measurement of binary mixtures containing ethyl laurate and ethanol at high pressures[J]. Journal of Molecular Liquids, 2019, 280: 301-306. |
24 | WilhelmE. What you always wanted to know about heat capacities, but were afraid to ask[J]. Journal of Solution Chemistry, 2010, 39(12): 1777-1818. |
25 | SegoviaJ J, Vega-MazaD, ChamorroC R, et al. High-pressure isobaric heat capacities using a new flow calorimeter[J]. The Journal of Supercritical Fluids, 2008, 46(3): 258-264. |
26 | IshmaelM P E, LukawskiM Z, TesterJ W. Isobaric heat capacity (Cp) measurements of supercritical fluids using flow calorimetry: equipment design and experimental validation with carbon dioxide, methanol, and carbon dioxide-methanol mixtures[J]. The Journal of Supercritical Fluids, 2016, 117: 72-79. |
27 | KagawaN, MatsuguchiA, YamayaK, et al. Behavior of isobaric heat capacity of R32 in the gas phase[J]. International Journal of Refrigeration, 2013, 36(8): 2216-2222. |
28 | MiyazawaT, KondoS, SuzukiT, et al. Specific heat capacity at constant pressure of ethanol by flow calorimetry[J]. Journal of Chemical & Engineering Data, 2012, 57(6): 1700-1707. |
29 | HeiT K, RaalJ D. Heat capacity measurement by flow calorimetry: an exact analysis[J]. AIChE Journal, 2009, 55(1): 206-216. |
30 | HeM, SuC, LiuX, et al. Measurement of isobaric heat capacity of pure water up to supercritical conditions[J]. The Journal of Supercritical Fluids, 2015, 100: 1-6. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[8] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[9] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[13] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[14] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||