1 |
ZhengZ J, XuY. A novel system for high-purity hydrogen production based on solar thermal cracking of methane and liquid-metal technology: thermodynamic analysis[J]. Energy Conversion and Management, 2018, 157: 562-574.
|
2 |
ZhengZ J, HeY L, LiY S. An entransy dissipation-based optimization principle for solar power tower plants[J]. Science China: Technological Sciences, 2014, 57: 773-783.
|
3 |
熊亚选, 栗博, 吴玉庭, 等. 添加纳米 SiO2 对四元溴化盐相变热物性的影响[J]. 化工学报, 2017, 68(4):1299-1305.
|
|
XiongY X, LiB, WuY T, et al. Improving phase change thermal properties of quaternary bromides by adding SiO2 nanoparticle[J]. CIESC Journal, 2017, 68(4): 1299-1305.
|
4 |
LiuM, SamanW, BrunoF. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132.
|
5 |
MedranoM, YilmazM O, NoguésM, et al. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems[J]. Applied Energy, 2009, 86(10): 2047-2055.
|
6 |
YangX H, LuZ, BaiQ, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Applied Energy, 2017, 202: 558-570.
|
7 |
ZhuZ Q, HuangY K, HuN, et al. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio[J]. Applied Thermal Engineering, 2018,128: 966-972.
|
8 |
TaoY B, YouY, HeY L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485.
|
9 |
WuW, ZhangS L, WangS F. A novel lattice Boltzmann model for the solid-liquid phase change with the convection heat transfer in the porous media[J]. International Journal of Heat and Mass Transfer, 2017, 104: 675-687.
|
10 |
YangJ, YangL, XuC, et al. Experimental study on enhancement of thermal energy storage with phase-change material[J]. Applied Energy, 2016, 169: 164-176.
|
11 |
XuY, RenQ, ZhengZ J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95.
|
12 |
XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880.
|
13 |
ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454.
|
14 |
XuH J, ZhaoC Y. Thermal performance of cascaded thermal storage with phase-change materials (PCMs)(Ⅰ): Steady cases[J]. International Journal of Heat and Mass Transfer, 2017, 106: 932-944.
|
15 |
YuanY P, CaoX L, XiangB, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136: 365-378.
|
16 |
KamkariB, ShokouhmandH. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 839-851.
|
17 |
RathodM K, BanerjeeJ. Thermal performance of a phase change material-based latent heat thermal storage unit[J]. Heat Transfer—Asian Research, 2014, 43(8): 706-719.
|
18 |
RathodM K, BanerjeeJ. Development of correlation for melting time of phase change material in latent heat storage unit[J]. Energy Procedia, 2015, 75: 2125-2130.
|
19 |
VollerV R, CrossM. Estimating the solidification/melting times of cylindrically symmetric regions[J]. International Journal of Heat and Mass Transfer, 1981, 24(9): 1457-1462.
|
20 |
SolomonA D. Melt time and heat flux for a simple PCM body[J]. Solar Energy, 1979, 22(3): 251-257.
|
21 |
RileyD S, SmithF T, PootsG. The inward solidification of spheres and circular cylinders[J]. International Journal of Heat and Mass Transfer, 1974, 17(12): 1507-1516.
|
22 |
HoC J, ViskantaR. Heat transfer during melting from an isothermal vertical wall[J]. Journal of Heat Transfer, 1984, 106(1): 12-19.
|
23 |
ZhangY, ChenZ, WangQ, et al. Melting in an enclosure with discrete heating at a constant rate[J]. Experimental Thermal and Fluid Science, 1993, 6(2): 196-201.
|
24 |
BilirL, IlkenZ. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers[J]. Applied Thermal Engineering, 2005, 25(10): 1488-1502.
|
25 |
BeluskoM, TayN, LiuM, et al. Effective tube-in-tank PCM thermal storage for CSP applications(Ⅰ): Impact of tube configuration on discharging effectiveness[J]. Solar Energy, 2016, 139: 733-743.
|
26 |
TayN H S, BrunoF, BeluskoM. Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system[J]. International Journal of Heat and Mass Transfer, 2012, 55: 5931-5940.
|
27 |
DittusF, BoelterL. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12: 3-22.
|
28 |
AlexiadesV. Mathematical Modeling of Melting and Freezing Processes[M]. Boca Raton: CRC Press, 1993: 145.
|
29 |
ZhengZ J, LiM J, HeY L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 2017, 185: 1152-1161.
|
30 |
ZhengZ J, LiM J, HeY L. Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD[J]. International Journal of Heat and Mass Transfer, 2015, 87: 376-379.
|
31 |
ZhengZ J, XuY, HeY L. Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD[J]. Science China: Technological Sciences, 2016, 59(10): 1475-1485.
|
32 |
ZhengZ J, HeY, HeY L, et al. Numerical optimization of catalyst configurations in a solar parabolic trough receiver–reactor with non-uniform heat flux[J]. Solar Energy, 2015,122:113-125.
|
33 |
陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001:220.
|
|
TaoW Q. Numerical Heat Transfer[M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001:220.
|
34 |
杨世铭, 陶文铨. 传热学[M]. 2版. 北京: 高等教育出版社, 1998:168.
|
|
YangS M, TaoW Q. Heat Transfer[M]. 2nd ed.Beijing: Higher Education Press, 1998:168.
|