CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1018-1025.DOI: 10.11949/0438-1157.20190586

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Study on transient heat transfer process of spray cooling with closed-loop

Nianyong ZHOU(),Muhao XU,Hao FENG,Feng DUAN,Qingrong WANG,Haifei CHEN,Qiang GUO   

  1. School of Petroleum Engineering, Changzhou University, Changzhou 213000, Jiangsu, China
  • Received:2019-05-29 Revised:2019-10-13 Online:2020-03-05 Published:2020-03-05
  • Contact: Nianyong ZHOU

闭式喷雾冷却的瞬态传热过程研究

周年勇(),徐慕豪,冯浩,段锋,王庆荣,陈海飞,郭强   

  1. 常州大学石油工程学院,江苏 常州 213000
  • 通讯作者: 周年勇
  • 作者简介:周年勇(1986—),男,博士,讲师, zhounianyong@cczu.edu.cn
  • 基金资助:
    江苏省自然科学基金项目(BK20180960)

Abstract:

A closed spray cooling test bench is built. The transient heat transfer process of spray cooling was experimentally studied, and the experimental curve describing the heat transfer process accurately was obtained. The influence of initial cooling temperature, heating power and medium type on transient heat transfer process is analyzed. The results are as follows: the trend of surface temperature can be divided into rapid decline, continuous increase and second decline. After experiencing the initial enhancement effect, if the initial surface temperature is less than the temperature Tfat Leiden frost point , the surface temperature decreases continuously and the thermal equilibrium is achieved in the nucleate boiling region; On the contrary, the surface temperature increases and the thermal equilibrium is achieved in the film boiling zone. The value of constant heating power determines the rate of surface temperature change. With the increase of constant heating power, the rate of surface temperature decreasing or rising accelerates. In addition, for different types of media, the higher nozzle inlet pressure and saturation temperature mean the higher temperature Tf at Leiden frost point.

Key words: spray cooling, heat transfer, transient process, surface, Leiden frost point

摘要:

搭建了闭式喷雾冷却实验台,实验研究了喷雾冷却的瞬态传热过程,获得了准确描述其传热过程的实验曲线,分析了冷却初始温度、加热功率及工质类型对瞬态传热过程的影响。研究表明:对于喷雾冷却的瞬态传热过程,其表面温度变化趋势可分为急速下降、持续升高、二段下降3类。初始表面温度在经历启动初期增强效应后,若小于莱登弗罗斯特点(LFP)对应的温度Tf,则表面温度不断下降,在核态沸腾区实现热平衡;反之,表面温度升高,在膜态沸腾区实现热平衡;恒定加热功率的大小决定了表面温度变化速率,随着恒定加热功率的增大,表面温度下降或者上升的速率加快;同等条件下,对于不同类型介质,喷嘴入口压力及饱和温度越高,其Tf也越高。

关键词: 喷雾冷却, 传热, 瞬态过程, 表面, 莱登弗罗斯特点

CLC Number: