CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 191-200.DOI: 10.11949/0438-1157.20190609
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ning WANG1(),Chenyu ZHANG1,Hongtao XU1(),Jianfei ZHANG2
Received:
2019-06-02
Revised:
2019-06-19
Online:
2019-09-06
Published:
2019-09-06
Contact:
Hongtao XU
通讯作者:
徐洪涛
作者简介:
王宁(1995—),男,硕士研究生,基金资助:
CLC Number:
Ning WANG, Chenyu ZHANG, Hongtao XU, Jianfei ZHANG. Performance investigation of sleeve tube heat exchanger filled with multi-layer phase change materials[J]. CIESC Journal, 2019, 70(S2): 191-200.
王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
Add to citation manager EndNote|Ris|BibTeX
Ri/mm | R1/mm | R2/mm | R3/mm | Ro/mm | 管壁及翅片厚度/mm |
---|---|---|---|---|---|
20 | 60 | 100 | 140 | 160 | 1 |
Table 1 Geometric parameters
Ri/mm | R1/mm | R2/mm | R3/mm | Ro/mm | 管壁及翅片厚度/mm |
---|---|---|---|---|---|
20 | 60 | 100 | 140 | 160 | 1 |
材料 | 熔化温度/℃ | 密度/(kg·m-3) | 比热容/(J·kg-1·K-1) | 热导率/(W·m-1·K-1) | 相变潜热/(J·kg-1) | 动力黏度/(Pa·s) |
---|---|---|---|---|---|---|
RT42[ | 42 | 760 | 2000 | 0.2 | 165000 | 0.0235 |
RT50[ | 50 | 760 | 2000 | 0.2 | 160000 | 0.0275 |
RT60[ | 60 | 770 | 2000 | 0.2 | 160000 | 0.02853 |
铜 | — | 8978 | 381 | 387.6 | — | — |
Table 2 Thermal property parameters
材料 | 熔化温度/℃ | 密度/(kg·m-3) | 比热容/(J·kg-1·K-1) | 热导率/(W·m-1·K-1) | 相变潜热/(J·kg-1) | 动力黏度/(Pa·s) |
---|---|---|---|---|---|---|
RT42[ | 42 | 760 | 2000 | 0.2 | 165000 | 0.0235 |
RT50[ | 50 | 760 | 2000 | 0.2 | 160000 | 0.0275 |
RT60[ | 60 | 770 | 2000 | 0.2 | 160000 | 0.02853 |
铜 | — | 8978 | 381 | 387.6 | — | — |
1 | AbdulateefA M, MatS, AbdulateefJ, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635. |
2 | AlvaG, LinY, FangG. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
3 | IbrahimN I, Al-SulaimanF A, RahmanS, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
4 | GasiaJ, MiróL, CabezaL F. Materials and system requirements of high temperature thermal energy storage systems: a review (2): Thermal conductivity enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1584-1601. |
5 | CastellA, SoléC. An overview on design methodologies for liquid–solid PCM storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 289-307. |
6 | MahdiJ M, LohrasbiS, NsoforE C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. International Journal of Heat and Mass Transfer, 2019, 137: 630-649. |
7 | DengS, NieC, JiangH, et al. Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2019, 130: 532-544. |
8 | KamkariB, GroulxD. Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles[J]. Experimental Thermal and Fluid Science, 2018, 97: 94-108. |
9 | JiC, QinZ, DubeyS, et al. Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection[J]. International Journal of Heat and Mass Transfer, 2018, 127: 255-265. |
10 | ZhengH, WangC, LiuQ, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381. |
11 | XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. |
12 | MahdiJ M, NsoforE C. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system[J]. Journal of Energy Storage, 2018, 20: 529-541. |
13 | GorzinM, HosseiniM J, RahimiM, et al. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger[J]. Journal of Energy Storage, 2019, 22: 88-97. |
14 | MahdiJ M, NsoforE C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986. |
15 | Al-JethelahM, TasnimS H, MahmudS, et al. Nano-PCM filled energy storage system for solar-thermal applications[J]. Renewable Energy, 2018, 126: 137-155. |
16 | DasN, TakataY, KohnoM, et al. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit[J]. International Journal of Heat and Mass Transfer, 2017, 113: 423-431. |
17 | DengS, NieC, WeiG, et al. Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube[J]. Energy and Buildings, 2019, 183: 161-173. |
18 | Al-AbidiA A, MatS, SopianK, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156. |
19 | WangP, YaoH, LanZ, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435. |
20 | EslamnezhadH, RahimiA B. Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins[J]. Applied Thermal Engineering, 2017, 113: 813-821. |
21 | AsgharianH, BaniasadiE. A review on modeling and simulation of solar energy storage systems based on phase change materials[J]. Journal of Energy Storage, 2019, 21: 186-201. |
22 | HamzaH, HanchiN, AbouelkhayratB, et al. Location and thickness effect of two phase change materials between layers of roof on energy consumption for air-conditioned room[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021009. |
23 | MosaffaA H, Infante FerreiraC A, TalatiF, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7. |
24 | SefidanA M, SojoudiA, SahaS C, et al. Multi-layer PCM solidification in a finned triplex tube considering natural convection[J]. Applied Thermal Engineering, 2017, 123: 901-916. |
25 | ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454. |
26 | JiC, QinZ, LowZ, et al. Non-uniform heat transfer suppression to enhance PCM melting by angled fins[J]. Applied Thermal Engineering, 2018, 129: 269-279. |
27 | ElbahjaouiR, El QarniaH, NaimiA. Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems[J]. Energy and Buildings, 2018, 168: 438-456. |
28 | PrietoM M, SuárezI, GonzálezB. Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems[J]. Applied Thermal Engineering, 2017, 116: 11-23. |
29 | 程友良, 韩健, 张金生. 相变蓄热单元蓄/放热过程的数值模拟研究[J]. 太阳能学报, 2018, (5): 1237-1244. |
ChengY L, HanJ, ZhangJ S. Numerical simulation on charge/discharge process of latent heat storage unit[J]. Acta Energiae Solaris Sinica, 2018, (5): 1237-1244. | |
30 | 陶文铨. 数值传热学 [M]. 2版. 西安: 西安交通大学出版社, 2001. |
TaoW Q. Numerical Heat Transfer [M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||