CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1469-1481.DOI: 10.11949/0438-1157.20190808
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yinhu KANG1(),Pengyuan ZHANG2,Xiaofeng LU1
Received:
2019-07-10
Revised:
2019-10-09
Online:
2020-04-05
Published:
2020-04-05
Contact:
Yinhu KANG
通讯作者:
亢银虎
基金资助:
CLC Number:
Yinhu KANG, Pengyuan ZHANG, Xiaofeng LU. Study on oscillatory extinction dynamics mechanism of dimethyl ether spherical diffusion flame[J]. CIESC Journal, 2020, 71(4): 1469-1481.
亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Diagram of spherical diffusion flame, and comparison of predicted results using GRAD=CURVE=0.1 (486 grids) and GRAD=CURVE=0.2 (303 grids) for flame at XO2*=42.1%
Fig.5 Response of maximum temperature upon a temperature perturbation for hot flames at different ambient oxygen mole fractions (δT is temperature perturbation ratio)
Fig.10 Phase functions of peak temperature and maximum reaction rate for key reactions R1, R29, R53, R56, R30 and R48 during oscillation extinction process of hot flame at XO2*=24.02% and δT=+0.3%
Fig.11 Phase functions of peak temperature and maximum reaction rate for key reactions R240, R264, R273, R274, R272, and R44 within 200—250 s of oscillation extinction process for cool flame at XO2*=6.1% and δT=+1.5%
1 | Kang Y H, Lu T F, Lu X F, et al. On predicting the length, width, and volume of the jet diffusion flame [J]. Appl. Therm. Eng., 2016, 94: 799-812. |
2 | Aggarwal S K. Extinction of laminar partially premixed flames [J]. Prog. Energy Combust. Sci., 2009, 35: 528-570. |
3 | Barlow R S, Meares S, Magnotti G, et al. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets [J]. Combust. Flame, 2015, 162: 3516-3540. |
4 | Li X, Yang H L, Jiang L Q, et al. Stretch extinction characteristics of CH4/CO2versus O2/H2O/CO2 and O2/H2O counterflow non-premixed flames at different oxidizer temperatures [J]. Fuel, 2016, 186: 648-655. |
5 | Christiansen E W, Tse S D, Law C K. A computational study of oscillatory extinction of spherical diffusion flames [J]. Combust. Flame, 2003, 134: 327-337. |
6 | Tang S T, Im H G, Atreya A. A computational study of spherical diffusion flames in microgravity with gas radiation(Ⅱ): Parametric studies of the diluent effects on flame extinction [J]. Combust. Flame, 2010, 157: 127-136. |
7 | Shan R Q, Lu T F. Ignition and extinction in perfectly stirred reactors with detailed chemistry [J]. Combust. Flame, 2012, 159: 2069-2076. |
8 | Yoo S W, Christiansen E W, Law C K. Oscillatory extinction of spherical diffusion flames: micro-buoyancy experiment and computation [J]. Proc. Combust. Inst., 2002, 29: 29-36. |
9 | Dietrich D L, Ross H D, Frante D T, et al. Candle flames in microgravity[C]//4th International Microgravity Combustion Workshop. Cleveland, 1997: 10194. |
10 | Farouk T I, Hicks M C, Dryer F L. Multistage oscillatory “cool flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition[J]. Proc. Combust. Inst., 2015, 35: 1701-1708. |
11 | Wang L, Jiang Y, Pan L W, et al. Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H2/CO/N2 syngas non-premixed flame [J]. Int. J. Hydrogen Energy, 2016, 41: 4820-4830. |
12 | Luo Z Y, Yoo C S, Richarson E S, et al. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow [J]. Combust. Flame, 2012, 159: 265-274. |
13 | 亢银虎, 张朋远, 刘葱葱, 等. 基于化学爆炸模式分析方法的乙烯对冲扩散火焰熄火机理[J]. 化工学报, 2019, 70(4): 1644-1651. |
Kang Y H, Zhang P Y, Liu C C, et al. Extinction mechanism of ethylene opposed-flow diffusion flame using chemical explosive mode analysis method[J]. CIESC Journal, 2019, 70(4): 1644-1651. | |
14 | 黄景怀, 李军伟, 陈新建, 等. 同轴管甲烷逆流燃烧器中火焰结构与燃烧稳定性[J]. 化工学报, 2016, 67(9): 3590-3597. |
Huang J H, Li J W, Chen X J, et al. Flame stability and structure of opposed methane / air jet in coaxial tubes [J]. CIESC Journal, 2016, 67(9): 3590-3597. | |
15 | Kang Y H, Wei S, Zhang P Y, et al. Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition [J]. Energy, 2017, 119: 1195-1211. |
16 | Turner M J L. Rocket and Spacecraft Propulsion [M]. 3rd ed. Berlin: Springer Press, 2009. |
17 | Wang H Y, Bechtold J K, Law C K. Nonlinear oscillations in diffusion flames [J]. Combust. Flame, 2016, 145: 376-389. |
18 | Kooshkbaghi M, Frouzakis C E, Boulouchos K, et al. n-Heptane/air combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions [J]. Combust. Flame, 2015, 162: 3166-3179. |
19 | 曾科. 负压下层流预混火焰结构与不稳定性研究 [D]. 长沙: 国防科学技术大学, 2012. |
Zeng K. Study on structure and self-induced instability of laminar premixed flame in low pressure [D]. Changsha: National University of Defense Technology, 2012. | |
20 | Kee R J, Grcar J F, Smooke M D, et al. A Fortran program for modeling steady laminar one-dimensional premixed flames [R]. Report No. SAND85-8240, Sandia National Laboratories, 1985. |
21 | Modest M F. Radiative Heat Transfer [M]. Academic Press, 2003. |
22 | Santa K J, Chao B H, Sunderland P B, et al. Radiative extinction of gaseous spherical diffusion flames in microgravity [J]. Combust. Flame, 2017, 151: 665-675. |
23 | Kee R J, Rupley F M, Miller J A. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics [R]. Report No. SAND89-8009B, Sandia National Laboratories, 1989. |
24 | Grcar J F. The Twopnt program for boundary value problems [R]. Report No. SAND91-8230, Sandia National Laboratories, 1992. |
25 | Zhao Z W, Chaos M, Kazakov A, et al. Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether [J]. Int. J. Chem. Kine., 2008, 40: 1-18. |
26 | Nishioka M, Law C K, Takeno T. A flame-controlling continuation method for generating S-curve responses with detailed chemistry [J]. Combust. Flame, 1996, 104(3): 328-342. |
27 | Ju Y G, Reuter C B, Won S H. Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures [J]. Combust. Flame, 2015, 162: 3580-3588. |
28 | Liang W K, Law C K. Extended flammability limits of n-heptane/air mixtures with cool flames [J]. Combust. Flame, 2017, 185: 75-81. |
29 | Minamoto Y, Chen J H. DNS of a turbulent lifted DME jet flame [J]. Combust. Flame, 2016, 169: 38-50. |
30 | Nayagam V, Dietrich D L, Ferkul P, et al. Can cool flames support quasi-steady alkane droplet burning? [J]. Combust. Flame, 2012, 159: 3583-3588. |
31 | Farouk T I, Dryer F L. On the extinction characteristics of alcohol droplet combustion under microgravity conditions — a numerical study [J]. Combust. Flame, 2012, 159: 3208-3223. |
32 | Kourdis P D, Goussis D A. Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillations [J]. Math. Biosci., 2013, 243: 190-214. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[12] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[13] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||