1 |
Hoefflinger B. ITRS: The International Technology Roadmap for Semiconductors[M]. Springer, 2011.
|
2 |
Sun B, Liu H F. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator[J]. Appl. Therm. Eng., 2017, 115: 435-443.
|
3 |
Ramos-Alvarado B, Li P W, Liu H, et al. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells[J]. Appl. Therm. Eng., 2011, 31: 2494-2507.
|
4 |
Gao F, Blunier B, Miraoui A. Proton exchange membrane fuel cell multi-physical dynamics and stack spatial non-homogeneity analyses[J]. J. Power Sources, 2010, 195: 7609-7626.
|
5 |
Datta M, Choi H W. Microheat exchanger for cooling high power laser diodes[J]. Appl. Therm. Eng., 2015, 90: 266-273.
|
6 |
Yang B, Wang P, Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spots in high power devices[J]. IEEE Trans. Compon. Packag. Technol., 2007, 30(3): 432-438.
|
7 |
Nnanna A A, Rutherford W, Elomar W, et al. Assessment of thermoelectric module with nanofluid heat exchanger[J]. Appl. Therm. Eng., 2009, 29(2/3): 491-500.
|
8 |
Karayiannis T G, Mahmoud M M. Flow boiling in microchannels: fundamentals and applications[J]. Appl. Therm. Eng., 2017, 115: 1372-1397.
|
9 |
郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12): 3798-3804.
|
|
Guo Z Y, Xu P, Wang Y H, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12): 3798-3804.
|
10 |
Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. Int. J. Heat Mass Transfer, 2015, 88: 652-661.
|
11 |
程云, 李菊香, 莫光东. 水在开孔泡沫铜中的池沸腾传热特性[J]. 化工学报, 2013, 64(4): 1231-1235.
|
|
Cheng Y, Li J X, Mo G D. Pool boiling heat transfer in porous copper foam[J]. CIESC Journal, 2013, 64(4): 1231-1235.
|
12 |
Sujith K C S, Suresh S, Aneesh C R, et al. Flow boiling heat transfer enhancement on copper surface using Fe doped Al2O3-TiO2 composite coatings[J]. Appl. Surf. Sci., 2015, 334: 102-109.
|
13 |
杨冬, 李永星, 陈听宽, 等.多孔表面管内高沸点工质的强化流动沸腾换热与阻力特性[J]. 化工学报, 2004, 55(10): 1631-1637.
|
|
Yang D, Li Y X, Chen T K, et al. Enhanced flow boiling heat transfer of high saturation temperature organic fluid in vertical porous tube[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(10): 1631-1637.
|
14 |
徐法尧, 吴慧英. 可压缩容积对内肋阵列微通道流动沸腾不稳定性影响[J]. 科学通报, 2017, 62: 312-319.
|
|
Xu F Y, Wu H Y. Effect of compressible volume on flow boiling instability of water in the pin-fin microchannel[J]. Chin. Sci. Bull., 2017, 62: 312-319.
|
15 |
杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989.
|
|
Du B Z, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989.
|
16 |
Shen H, Zhang Y C, Wang C C, et al. Comparative study for convective heat transfer of counter-flow wavy double-layer microchannel heat sinks in staggered arrangement[J]. Appl. Therm. Eng., 2018, 137: 228-237.
|
17 |
Lin L, Zhao J, Lu G, et al. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude[J]. Int. J. Therm. Sci., 2017, 118: 423-434.
|
18 |
Rosaguti N R, Fletcher D F, Haynes B S. Low-Reynolds number heat transfer enhancement in sinusoidal channels[J]. Chem. Eng. Sci., 2007, 62(3): 694-702.
|
19 |
Zhou J, Hatami M, Song D, et al. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods[J]. Int. J. Heat Mass Transfer, 2016, 103: 715-724.
|
20 |
Metwally H, Manglik R M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels[J]. Int. J. Heat Mass Transfer, 2004, 47(10/11): 2283-2292.
|
21 |
Sui Y, Teo C, Lee P S, et al. Fluid flow and heat transfer in wavy microchannels[J]. Int. J. Heat Mass Transfer, 2010, 53(13/14): 2760-2772.
|
22 |
Sui Y, Lee P, Teo C. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section[J]. Int. J. Therm. Sci., 2011, 50(12): 2473-2482.
|
23 |
Rush T, Newell T, Jacobi A. An experimental study of flow and heat transfer in sinusoidal wavy passages[J]. Int. J. Heat Mass Transfer, 1999, 42(9): 1541-1553.
|
24 |
Huang H X, Wu H Y, Zhang C. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels[J]. J. Micromech. Microeng., 2018, 28: 055003.
|
25 |
Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, et al. Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink[J]. Appl. Therm. Eng., 2016, 92: 50-61.
|
26 |
Tiwari N, Moharana M. Two-phase flow conjugate heat transfer in wavy microchannel[C]//ASME 16th International Conference on Nanochannels, Microchannels, and Minichannels. 2018: V001T02A017.
|
27 |
Xia G D, Tang Y X, Zong L X, et al. Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall[J]. Int. Commun. Heat Mass Transfer, 2019, 101: 89-102.
|
28 |
Deng D X, Chen X L, Chen L, et al. Preparation of porous structures on copper microchannel surfaces by laser writing[J]. Sci. China: Technol. Sci., 2019, 62: 1-10.
|
29 |
刘巍, 朱春玲. 分流板结构对微通道平行流蒸发器性能的影响[J]. 化工学报, 2012, 63(3): 761-766.
|
|
Liu W, Zhu C L. Effects of deflector structure on performance of micro-channel evaporator with parallel flow[J]. CIESC Journal, 2012, 63(3): 761-766.
|
30 |
Moffat R J. Describing the uncertainties in experimental results[J]. Exp. Therm. Fluid Sci., 1988, 1: 3-17.
|