CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 194-203.DOI: 10.11949/0438-1157.20211029
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Pei ZHOU1(),Xiuping ZHANG2,Jingchun TANG1(),Lei YANG1,Bin YE1,Ronghua HUANG3
Received:
2021-07-23
Revised:
2021-10-21
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jingchun TANG
周培1(),张秀平2,唐景春1(),杨磊1,叶斌1,黄荣华3
通讯作者:
唐景春
作者简介:
周培(1991—),男,博士,讲师,基金资助:
CLC Number:
Pei ZHOU, Xiuping ZHANG, Jingchun TANG, Lei YANG, Bin YE, Ronghua HUANG. Experimental and theoretical study on bubble lift-off diameter in subcooled flow boiling[J]. CIESC Journal, 2022, 73(1): 194-203.
周培, 张秀平, 唐景春, 杨磊, 叶斌, 黄荣华. 过冷流动沸腾中气泡浮升直径的实验及理论研究[J]. 化工学报, 2022, 73(1): 194-203.
Add to citation manager EndNote|Ris|BibTeX
直接测量参数 | 间接测量参数 | |||||
---|---|---|---|---|---|---|
系统压力 | 热电偶位置 | 热电偶温度 | 流速 | 壁面热流 | 壁面温度 | |
0.5 kPa | 0.05 mm | 0.5 K | 0.08 m/s | 17 kW/m2 | 0.7 K |
Table 1 Measured and calculated parameters and their uncertainties
直接测量参数 | 间接测量参数 | |||||
---|---|---|---|---|---|---|
系统压力 | 热电偶位置 | 热电偶温度 | 流速 | 壁面热流 | 壁面温度 | |
0.5 kPa | 0.05 mm | 0.5 K | 0.08 m/s | 17 kW/m2 | 0.7 K |
方向 | 力模型 |
---|---|
x方向 | |
y方向 | |
Table 2 Various forces for force balance model[3]
方向 | 力模型 |
---|---|
x方向 | |
y方向 | |
模型 | 方程 |
---|---|
Zeng模型[ | |
本文采用的模型[ |
Table 3 Models of bubble growth rate
模型 | 方程 |
---|---|
Zeng模型[ | |
本文采用的模型[ |
方向 | |||||
---|---|---|---|---|---|
水平 | 899~1583 | 0.014~0.026 | 0.009~0.029 | 1.54~1.89 | 7858~15743 |
Table 4 Range of parameters for the new bubble lift-off diameter model
方向 | |||||
---|---|---|---|---|---|
水平 | 899~1583 | 0.014~0.026 | 0.009~0.029 | 1.54~1.89 | 7858~15743 |
1 | 董非, 苑天林, 武志伟, 等. 基于RPI模型的内燃机冷却水腔内数值模拟研究[J]. 化工学报, 2019, 70: 250-257. |
Dong F, Yuan T L, Wu Z W, et al. Numerical study of engine water jackets using RPI model[J]. CIESC Journal, 2019, 70: 250-257. | |
2 | 凌家驹, 向建华, 张小良. 强化缸盖鼻梁区传热的水腔表面结构设计研究[J]. 内燃机学报, 2019, 37(5): 454-461. |
Ling J J, Xiang J H, Zhang X L. Surface structure design of water cavity for enhancing heat transfer in bridge zone of cylinder head[J]. Transactions of CSICE, 2019, 37(5): 454-461. | |
3 | Zhou P, Huang R H, Huang S, et al. Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119105. |
4 | Mohanty R L, Das M K. A critical review on bubble dynamics parameters influencing boiling heat transfer[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 466-494. |
5 | Basu N, Warrier G R, Dhir V K. Wall heat flux partitioning during subcooled flow boiling(1): Model development[J]. Journal of Heat Transfer, 2005, 127(2): 131-140. |
6 | Gilman L, Baglietto E. A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics[J]. International Journal of Multiphase Flow, 2017, 95: 35-53. |
7 | Prodanovic V, Fraser D, Salcudean M. Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates[J]. International Journal of Multiphase Flow, 2002, 28(1): 1-19. |
8 | Tolubinsky V I, Kostanchuk D M. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling[C]//Proceeding of International Heat Transfer Conference. Paris-Versailles, France, 1970: 1-11. |
9 | Situ R, Hibiki T, Ishii M, et al. Bubble lift-off size in forced convective subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5536-5548. |
10 | Brooks C S, Hibiki T. Wall nucleation modeling in subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2015, 86: 183-196. |
11 | Du J Y, Zhao C R, Bo H L. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2018, 127: 796-805. |
12 | Han C Y, Griffith P. The mechanism of heat transfer in nucleate pool boiling(I): Bubble initiaton, growth and departure[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 887-904. |
13 | Ünal H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. |
14 | 潘丰, 王超杰, 母立众, 等. 池沸腾孤立气泡生长过程中微液层蒸发影响的实验和模拟耦合分析[J]. 化工学报, 2021, 72(5): 2514-2527. |
Pan F, Wang C J, Mu L Z, et al. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations[J]. CIESC Journal, 2021, 72(5): 2514-2527. | |
15 | Morel C, Mimouni s, Lavi'eville J M, et al. R1I3 boiling bubbly flow in an annular geometry simulated with the NEPTUNE code[C]// Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Avignon, France, 2005: 36-45. |
16 | Dong X M, Zhang Z J. Mechanism study of bubble maximum diameter in the subcooled boiling flow for low-pressure condition[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120585. |
17 | Klausner J F, Mei R, Bernhard D M, et al. Vapor bubble departure in forced convection boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 651-662. |
18 | Zeng L Z, Klausner J F, Bernhard D M, et al. A unified model for the prediction of bubble detachment diameters in boiling systems(II): Flow boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(9): 2271-2279. |
19 | Abdous M A, Holagh S G, Shamsaiee M, et al. The prediction of bubble departure and lift-off radii in vertical U-shaped channel under subcooled flow boiling based on forces balance analysis[J]. International Journal of Thermal Sciences, 2019, 142: 316-331. |
20 | Chen D Q, Pan L M, Ren S. Prediction of bubble detachment diameter in flow boiling based on force analysis[J]. Nuclear Engineering and Design, 2012, 243: 263-271. |
21 | Colombo M, Fairweather M. Prediction of bubble departure in forced convection boiling: a mechanistic model[J]. International Journal of Heat and Mass Transfer, 2015, 85: 135-146. |
22 | Raj S, Pathak M, Khan M K. An analytical model for predicting growth rate and departure diameter of a bubble in subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2017, 109: 470-481. |
23 | Sugrue R, Buongiorno J. A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[J]. Nuclear Engineering and Design, 2016, 305: 717-722. |
24 | Thorncroft G E, Klausner J F. Bubble forces and detachment models[J]. Multiphase Science and Technology, 2001, 13(3/4): 42. |
25 | Yeoh G H, Tu J Y. A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow[J]. Nuclear Engineering and Design, 2005, 235(10/11/12): 1251-1265. |
26 | Gao W Z, Qi J Y, Yang X, et al. Experimental investigation on bubble departure diameter in pool boiling under sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2019, 134: 933-947. |
27 | Wang X L, Wu Z, Wei J J, et al. Correlations for prediction of the bubble departure radius on smooth flat surface during nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 699-714. |
28 | Hua S Y, Huang R H, Zhou P. Numerical investigation of two-phase flow characteristics of subcooled boiling in IC engine cooling passages using a new 3D two-fluid model[J]. Applied Thermal Engineering, 2015, 90: 648-663. |
29 | 李智, 黄荣华, 王兆文, 等. 基于多场耦合的重载柴油机气缸盖优化设计[J]. 华中科技大学学报(自然科学版), 2011, 39(8): 10-13. |
Li Z, Huang R H, Wang Z W, et al. Optimization design of the cylinder head in heavy duty diesel engines based on multi-field coupled method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(8): 10-13. | |
30 | Sugrue R, Buongiorno J, McKrell T. An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure[J]. Nuclear Engineering and Design, 2014, 279: 182-188. |
31 | Liu X, Cao Y F, Zhang T E. Experimental study on boiling heat transfer in cylinder head jacket[J]. Advanced Materials Research, 2012, 433/434/435/436/437/438/439/440: 18-23. |
32 | 董非, 张朝烛, 龚伟, 等. 缸盖鼻梁区水腔内沸腾气泡演化行为试验[J]. 内燃机学报, 2018, 36(3): 252-257. |
Dong F, Zhang C Z, Gong W, et al. Experiment on evolution behaviors of boiling bubbles in water jacket in bridge zone of cylinder head[J]. Transactions of CSICE, 2018, 36(3): 252-257. | |
33 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||