CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 425-429.DOI: 10.11949/0438-1157.20191117
• Energy and environmental engineering • Previous Articles Next Articles
Xiaodong YANG1(),Liping PANG2(
),Rong A3,Liang JIN1
Received:
2019-10-07
Revised:
2019-11-13
Online:
2020-04-25
Published:
2020-04-25
Contact:
Liping PANG
通讯作者:
庞丽萍
作者简介:
杨晓东(1987—),男,博士,高级工程师, CLC Number:
Xiaodong YANG, Liping PANG, Rong A, Liang JIN. Thermal flight time of fuel heat management system for high speed vehicle[J]. CIESC Journal, 2020, 71(S1): 425-429.
杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
符号 | 变量 | 单位 |
---|---|---|
Ecv | 储存能 | J |
气动加热量 | W | |
油箱流入控制体的能量 | W | |
机载热源发热量 | W | |
供给发动机能量 | W | |
蒸发器最大换热量 | W | |
油箱出口燃油质量流量 | kg·s-1 | |
Te | 附面层温度 | K |
T1 | 油箱出口温度 | K |
Ua | 附面层空气与燃油总传热系数 | W·m-2·K-1 |
cp | 比定压热容 | J·kg-1·K-1 |
循环回路入控制体能量 | W | |
油箱流出控制体的能量 | W | |
进入消耗冷却剂换热器能量 | W | |
εc | 效能 | |
循环回路燃油质量流量 | kg·s-1 | |
Tref | 任意参考温度 | K |
T | 燃油箱温度 | K |
Tlim | 发动机油温限 | K |
Aa | 油箱内壁瞬时润湿面积 | m2 |
Table 1 Variable table
符号 | 变量 | 单位 |
---|---|---|
Ecv | 储存能 | J |
气动加热量 | W | |
油箱流入控制体的能量 | W | |
机载热源发热量 | W | |
供给发动机能量 | W | |
蒸发器最大换热量 | W | |
油箱出口燃油质量流量 | kg·s-1 | |
Te | 附面层温度 | K |
T1 | 油箱出口温度 | K |
Ua | 附面层空气与燃油总传热系数 | W·m-2·K-1 |
cp | 比定压热容 | J·kg-1·K-1 |
循环回路入控制体能量 | W | |
油箱流出控制体的能量 | W | |
进入消耗冷却剂换热器能量 | W | |
εc | 效能 | |
循环回路燃油质量流量 | kg·s-1 | |
Tref | 任意参考温度 | K |
T | 燃油箱温度 | K |
Tlim | 发动机油温限 | K |
Aa | 油箱内壁瞬时润湿面积 | m2 |
1 | Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems [C]// SAE Transactions, 2004, 113: 1965-1973. |
2 | Maiorano L P, Molina J M. Challenging thermal management by incorporation of graphite into aluminium foams [J]. Materials & Design, 2018, 158: 160-171. |
3 | Iqbal M A, Macha N K, Danesh W, et al. Thermal management challenges and mitigation techniques for transistor-level 3-D integration [J]. Microelectronics Journal, 2019, 91: 61-69. |
4 | Jeffrey F, Philip O, Michael G, et al. Challenges and opportunities for electric aircraft thermal management [J]. Aircraft Engineering & Aerospace Technology, 2014, 86(6): 519-524. |
5 | Yu S, Ganev E. Next generation power and thermal management system [J]. SAE International Journal of Aerospace, 2009, 1(1): 1107-1121. |
6 | Fjelstad J. Beating the heat: a review of thermal management challenges [J]. Surface Mount Technology, 2013, 28(7): 46-50. |
7 | David B D. Optimal cruise altitude for aircraft thermal management [J] Journal of Guidance Control and Dynamics, 2015, 38(11): 2084-2095. |
8 | Howard C E. Thermal management a challenge for designers of future military aircraft [J]. Military and Aerospace Electronics, 2008, 19(4): 12. |
9 | Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics (review) [J]. Materials Today, 2014, 17(4): 163-174. |
10 | Yu X, Mao Y. Research and simulation of hypersonic aircraft thermal management system and its control model [J]. Journal of Aerospace Power, 2018, 33(3): 741-751. |
11 | Phillips E H. Langley develops thermal management concept for hypersonic aircraft [J]. Aviation Week and Space Technology, 1991, 134(15): 41. |
12 | 张斌. 民用飞机燃油箱系统热模型分析研究[J]. 民用飞机设计与研究, 2013, (1): 23-26. |
Zhang B. Research on the thermal model analysis of civil aircraft fuel tank system [J]. Civil Aircraft Design and Research, 2013, (1): 23-26. | |
13 | 吕亚国, 任国哲, 刘振侠, 等. 飞机燃油箱热分析研究[J]. 推进技术, 2015, (1): 61-67. |
Lü Y G, Ren G Z, Liu Z X, et al. Thermal analysis of fuel tank for aircraft [J]. Journal of Propulsion Technology, 2015, (1): 61-67. | |
14 | 李艳军, 朱福民. 液压油箱模型散热性能的研究[J]. 科技信息, 2014, (9): 42-43. |
Li Y J, Zhu F M. Study on heat dissipation performance of hydraulic oil tank model [J]. Science & Technology Information, 2014, (9): 42-43 | |
15 | Dechow M, Nurcombe C A H. Aircraft environmental control systems [J]. The Handbook of Environmental Chemistry, 2005, 4(1): 3-24. |
16 | Yang Y C, Gao Z C. Power optimization of the environmental control system for the civil more electric aircraft [J]. Energy, 2019, 172: 196-206. |
17 | Yi C. Study on the simulink model for the testbed of the environmental control system of the aircraft [J]. Journal of Physics: Conference Series, 2018, 1060(1): 012073. |
18 | Chen L, Zhang X, Wang C, et al. A novel environmental control system facilitating humidification for commercial aircraft [J]. Building and Environment, 2017, 126: 34-41. |
19 | Kyle A P, William T H, Lu H, et al. Built-in test design for fault detection and isolation in an aircraft environmental control system [J]. IFAC PapersOnLine, 2016, 49(7): 7-12. |
20 | Bender D. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems [J]. Energy, 2017, 137: 739-751. |
21 | Yin H, Shen X, Huang Y, et al. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468. |
22 | Teresa J L, Isabel P G. A thermoeconomic analysis of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2005, 25(2/3): 309-325. |
23 | 于喜奎, 毛羽丰. 高超声速飞机热管理系统控制模型构建与仿真[J]. 航空动力学报, 2018, 33(3): 741-751. |
Yu X K, Mao Y F. Research and simulation of hypersonic aircraft thermal management system and its control model [J]. Journal of Aerospace Power, 2018, 33(3): 741-751. | |
24 | 兰江, 朱磊, 赵竞全. 通用油箱热模型的建模与仿真[J]. 航空动力学报, 2014, 29(7): 1623-1631. |
Lan J, Zhu L, Zhao J Q. Modeling and simulation of general fuel tank thermal model [J]. Journal of Aerospace Power, 2014, 29(7): 1623-1631. | |
25 | 郝毓雅, 王婕. 飞机燃油热管理系统分析[J]. 现代机械, 2015, (3): 77-82. |
Hao Y Y, Wang J. The analysis of aircraft fuel thermal management system [J]. Modern Machinery, 2015, (3): 77-82. | |
26 | Anderson J D. Aircraft Performance and Design [M]. New York: McGraw-Hill Education, 1999. |
27 | 雷屹坤. 飞机综合一体化热/能量管理系统方案研究[D]. 南京: 南京航空航天大学, 2014. |
Lei Y K. Research on scheme of integrated thermal and energy management system on aircraft [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 | |
28 | 袁美名, 常士楠, 洪海华, 等. 飞机机载综合热管理系统仿真研究[J]. 航空科学技术, 2008, (4): 30-34. |
Yuan M M, Chang S N, Hong H H, et al. Simulation of aircraft integrated thermal management system [J]. Aeronautical Science and Technology, 2008, (4): 30-34. | |
29 | 王文龙, 王伟. 下一代战斗机综合环境控制/热管理系统开发现状[J]. 飞机设计, 2004, (1): 74-76. |
Wang W L, Wang W. Development of integrated environmental control system/thermal management system (IECS/TMS) for next generation fighter aircraft [J]. Aircraft Design, 2004, (1): 74-76. | |
30 | 陈悦. 飞机燃油系统热负荷计算及热管理分析[D]. 南京: 南京航空航天大学, 2014. |
Chen Y. Heat sink calculation and the analysis of thermal management for aircraft fuel system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[5] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[6] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[7] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[8] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[12] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[13] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[14] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[15] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 381
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 456
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||