CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 486-493.DOI: 10.11949/0438-1157.20191118

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Thermal effect analysis of nonmetallic addition manufacturing in spacecraft cabin environment

Dongsheng YANG1(),Rong A2,Jianbin ZHANG3,Dapeng WANG1,Bin ZHANG1,Yingli XU1,Junjie QIN1,Shufen LIU1   

  1. 1.Beijing Spacecrafts, Beijing 100094, China
    2.Institute of Manned Space System Engineering, CAST, Beijing 100094, China
    3.China Academy of Space Technology, Beijing 100094, China
  • Received:2019-10-07 Revised:2019-10-23 Online:2020-04-25 Published:2020-04-25
  • Contact: Dongsheng YANG

航天器舱内环境下非金属增材制造热效应分析

杨东升1(),阿嵘2,张建斌3,王大鹏1,张斌1,徐迎丽1,秦俊杰1,刘淑芬1   

  1. 1.北京卫星制造厂有限公司,北京 100094
    2.中国空间技术研究院载人航天总体部,北京 100094
    3.中国空间技术研究院,北京 100094
  • 通讯作者: 杨东升
  • 作者简介:杨东升(1986—),男,博士,高级工程师,273060531@qq.com

Abstract:

In view of application requirement of unattended non-metallic augmentation manufacturing technology in the future operation and maintenance development of space station, the thermal environment in the process of augmentation manufacturing in the space cabin environment is analyzed. The device was modeled, the distribution and heat production characteristics of the multiple heat sources was analyzed, the thermal diffusion effect was controlled, and temperature field simulation of local thermal insulation and integral enhanced convection design were carried out. Results showed that, the power consumption of the airtight device is about 72-96 W, the wall temperature of the device is maintained at about 29℃ when the initial temperature is 20℃, and the heat dissipation efficiency between the device and the environment can reach 21.6 W·m-2, which meets the temperature requirement of space material addition manufacturing and the temperature stability and reliability of the device. It provides certain theoretical guidance for on-orbit test verification in China, and provides new ideas and schemes for future extravehicular environment.

Key words: nonmetallic addition manufacture, thermodynamics, spacecraft, environment, experimental validation

摘要:

针对未来空间站后续运营与维护发展中对无人自主非金属增材制造技术的应用需求,对空间舱内环境下增材制造过程中的热环境进行了分析,对增材制造装置建模,多热源空间分布与产热特性分析,局部保温及整体强化对流设计热扩散效应与温度场仿真,并对增材制造装置的热控措施开展了试验验证。分析表明:密闭装置功耗72~96 W,在初始温度为20℃条件下装置壁面温度维持在29℃左右,与环境之间的散热效率可达21.6 W·m-2,满足空间增材制造的温度要求,满足装置的温度稳定性与可靠性,为我国空间在轨试验验证给予了一定的理论指导,也为未来舱外环境下的热控设计提供新的思路与方案。

关键词: 非金属增材制造, 热力学, 航天器, 环境, 试验验证

CLC Number: