CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 274-282.DOI: 10.11949/0438-1157.20191255
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhengliang HUANG1,3(),Chao WANG1,3,Shaoshuo LI1,3,Yao YANG1,3(),Jingyuan SUN1,3,Jingdai WANG1,2,Yongrong YANG1,2
Received:
2019-10-23
Revised:
2019-10-30
Online:
2020-01-05
Published:
2020-01-05
Contact:
Yao YANG
黄正梁1,3(),王超1,3,李少硕1,3,杨遥1,3(),孙婧元1,3,王靖岱1,2,阳永荣1,2
通讯作者:
杨遥
作者简介:
黄正梁(1982—),男,助理研究员,基金资助:
CLC Number:
Zhengliang HUANG, Chao WANG, Shaoshuo LI, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Development and application of image analysis method based on deep-learning in gas-liquid-solid three-phase reactor[J]. CIESC Journal, 2020, 71(1): 274-282.
黄正梁, 王超, 李少硕, 杨遥, 孙婧元, 王靖岱, 阳永荣. 基于深度学习的气液固三相反应器图像分析方法及应用[J]. 化工学报, 2020, 71(1): 274-282.
Add to citation manager EndNote|Ris|BibTeX
学习率 | 训练次数 | |||||
---|---|---|---|---|---|---|
50 | 100 | 200 | 500 | 1000 | 2000 | |
0.0001 | 62.0 | 72.4 | 73.3 | 77.8 | 84.1 | 88.8 |
0.001 | 78.0 | 81.2 | 85.7 | 89.9 | 91.6 | 91.9 |
0.005 | 86.2 | 87.7 | 90.4 | 92.9 | 94.1 | 95.3 |
0.01 | 84.4 | 85.4 | 86.7 | 87.0 | 90.1 | 91.4 |
0.1 | 61.8 | 62.3 | 61.3 | 63.1 | 61.5 | 61.9 |
Table 1 Training accuracy of model at various learning rates/%
学习率 | 训练次数 | |||||
---|---|---|---|---|---|---|
50 | 100 | 200 | 500 | 1000 | 2000 | |
0.0001 | 62.0 | 72.4 | 73.3 | 77.8 | 84.1 | 88.8 |
0.001 | 78.0 | 81.2 | 85.7 | 89.9 | 91.6 | 91.9 |
0.005 | 86.2 | 87.7 | 90.4 | 92.9 | 94.1 | 95.3 |
0.01 | 84.4 | 85.4 | 86.7 | 87.0 | 90.1 | 91.4 |
0.1 | 61.8 | 62.3 | 61.3 | 63.1 | 61.5 | 61.9 |
训练集大小 | 平均相对偏差/% |
---|---|
50 | 20.6 |
100 | 16 |
150 | 12.1 |
200 | 9.1 |
250 | 7.2 |
300 | 5.1 |
350 | 4.4 |
400 | 4.1 |
Table 2 Relative deviation of model
训练集大小 | 平均相对偏差/% |
---|---|
50 | 20.6 |
100 | 16 |
150 | 12.1 |
200 | 9.1 |
250 | 7.2 |
300 | 5.1 |
350 | 4.4 |
400 | 4.1 |
Fig.5 Three typical gas-liquid flow behaviors in trickle bed(a) uG = 0.069 m·s-1, uL = 0.003 m·s-1; (b) and (c) uG = 0.069 m·s-1, uL = 0.022 m·s-1; (d) uG = 0.007 m·s-1, uL = 0.028 m·s-1
流型 | 液相分数 均值/ % | 液相分数 标准差/ % | 液相分数 极差/ % | 半峰宽/% |
---|---|---|---|---|
涓流(uG = 0.069 m·s-1, uL = 0.003 m·s-1) | 43.83 | 0.15 | 0.65 | 0.44 |
脉冲流(uG = 0.069 m·s-1, uL = 0.022 m·s-1) | 65.45 | 4.24 | 23.27 | 10.82 |
鼓泡流(uG = 0.007 m·s-1, uL = 0.028 m·s-1) | 82.93 | 3.37 | 24.61 | 7.20 |
Table 3 Characteristic parameters corresponding to three typical flow regimes in trickle bed
流型 | 液相分数 均值/ % | 液相分数 标准差/ % | 液相分数 极差/ % | 半峰宽/% |
---|---|---|---|---|
涓流(uG = 0.069 m·s-1, uL = 0.003 m·s-1) | 43.83 | 0.15 | 0.65 | 0.44 |
脉冲流(uG = 0.069 m·s-1, uL = 0.022 m·s-1) | 65.45 | 4.24 | 23.27 | 10.82 |
鼓泡流(uG = 0.007 m·s-1, uL = 0.028 m·s-1) | 82.93 | 3.37 | 24.61 | 7.20 |
1 | Nigam K D P, Larachi F. Process intensification in trickle-bed reactors[J]. Chemical Engineering Science, 2005, 60(22): 5880-5894. |
2 | Kantarci N, Borak F, Ulgen K O. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263-2283. |
3 | Ng K M. A model for flow regime transitions in cocurrent down-flow trickle-bed reactors[J]. AIChE Journal, 1986, 32(1): 115-122. |
4 | Ranade V V. Trickle Bed Reactors: Reactor Engineering and Applications[M]. Chaudhari R V, Ed. Amsterdam: Elsevier, 2011: 285. |
5 | Sai P S T, Varma Y B G. Flow pattern of the phases and liquid saturation in gas-liquid concurrent downflow through packed beds[J]. The Canadian Journal of Chemical Engineering, 1988, 66(3): 353-360. |
6 | Sato Y, Hirose T, Takahashi F, et al. Flow pattern and pulsation properties of cocurrent gas-liquid downflow in packed beds[J]. Journal of Chemical Engineering of Japan, 1973, 6(4): 315-319. |
7 | Fukushima S, Kusaka K. Gas-liquid mass transfer and hydrodynamic flow region in packed columns with cocurrent upward flow[J]. Journal of Chemical Engineering of Japan, 1979, 12(4): 296-301. |
8 | Melli T R, Desantos J M, Kolb W B, et al. Cocurrent downflow in networks of passages-microscale roots of macroscale flow regimes[J]. Industrial & Engineering Chemistry Research, 1990, 29(12): 2367-2379. |
9 | Benkrid K, Rode S, Pons M N, et al. Bubble flow mechanisms in trickle beds—an experimental study using image processing[J]. Chemical Engineering Science, 2002, 57(16): 3347-3358. |
10 | Jo D, Revankar S T. Bubble mechanisms and characteristics at pore scale in a packed-bed reactor[J]. Chemical Engineering Science, 2009, 64(13): 3179-3187. |
11 | Gunjal P R, Kashid M N, Ranade V V, et al. Hydrodynamics of trickle-bed reactors: experiments and CFD modeling[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6278-6294. |
12 | Urseanu M I, Boelhouwer J G, Bosman H J M, et al. Induced pulse operation of high-pressure trickle bed reactors with organic liquids: hydrodynamics and reaction study[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(11): 1411-1416. |
13 | Kolb W B, Melli T R, Desantos J M, et al. Cocurrent downflow in packed beds. Flow regimes and their acoustic signatures[J]. Industrial & Engineering Chemistry Research, 1990, 29(12): 2380-2389. |
14 | Boelhouwer J G, Piepers H W, Drinkenburg A A H. Nature and characteristics of pulsing flow in packed bed reactors[J]. Chemical Engineering Science, 2002, 57(22/23): 4865-4876. |
15 | Zhao T, Eda T, Achyut S, et al. Investigation of pulsing flow regime transition and pulse characteristics in trickle-bed reactor by electrical resistance tomography[J]. Chemical Engineering Science, 2015, 130: 8-17. |
16 | Singh B K, Jain E, Buwa V V. Feasibility of electrical resistance tomography for measurements of liquid holdup distribution in a trickle bed reactor[J]. Chemical Engineering Journal, 2019, 358: 564-579. |
17 | Basavaraj M G, Gupta G S, Naveen K, et al. Local liquid holdups and hysteresis in a 2-D packed bed using X-ray radiography[J]. AIChE Journal, 2005, 51(8): 2178-2189. |
18 | Anadon L D, Sederman A J, Gladden L F. Mechanism of the trickle-to-pulse flow transition in fixed-bed reactors[J]. AIChE Journal, 2006, 52(4): 1522-1532. |
19 | Sederman A J, Gladden L F. Transition to pulsing flow in trickle-bed reactors studied using MRI[J]. AIChE Journal, 2005, 51(2): 615-621. |
20 | Hamidipour M, Larachi F, Ring Z. Cyclic operation strategies in trickle beds and electrical capacitance tomography imaging of filtration dynamics[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 934-952. |
21 | Honda G S, Lehmann E, Hickman D A, et al. Effects of prewetting on bubbly- and pulsing-flow regime transitions in trickle-bed reactors[J]. Industrial & Engineering Chemistry Research, 2015, 54(42): 10253-10259. |
22 | Schneider C A, Rasband W S, Eliceiri K W. NIH Image to ImageJ: 25 years of image analysis[J]. Nature Methods, 2012, 9(7): 671-675. |
23 | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
24 | Voulodimos A, Doulamis N, Doulamis A, et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-13. |
25 | Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural networks, 2015, 61: 85-117. |
26 | Shaw G L. Donald Hebb: the organization of behavior[J]. Brain Theory, 1986, 17(3): 231-233. |
27 | Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning a brief survey [J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. |
28 | Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986;323(6088): 533-536. |
29 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554. |
30 | Ma R H, Zeng X Q. A review of deep learning research[J]. KSII Transactions on Internet and Information Systems, 2019, 13(4): 1738-1764. |
31 | Ciresan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2012: 3642-3649. |
32 | Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88. |
33 | Taigman Y, Yang M, Ranzato M A, et al. DeepFace: closing the gap to human-level performance in face verification[C]//IEEE Conference on Computer Vision and Pattern Recognition.2014: 1701-1708. |
34 | Ouyang W, Chu X, Wang X. Multi-source deep learning for human pose estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2014: 2337-2344. |
35 | Paisitkriangkrai S, Sherrah J, Janney P, et al. Semantic labeling of aerial and satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 2868-2881. |
36 | Maggiori E, Tarabalka Y, Charpiat G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 645-657. |
37 | Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. |
38 | Levec J, Grosser K, Carbonell R G. The hysteretic behavior of pressure drop and liquid holdup in trickle beds[J]. AIChE Journal, 1988, 34(6): 1027-1030. |
39 | Holub R A, Dudukovic M P, Ramachandran P A. Pressure drop, liquid holdup, and flow regime transition in trickle flow[J]. AIChE Journal, 1993, 39(2): 302-321. |
40 | Macdonald I F, El-Sayed M S, Mow K, et al. Flow through porous media-the ergun equation revisited[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(3): 199-208. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[7] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[11] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[14] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[15] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||