CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 283-289.DOI: 10.11949/0438-1157.20191213
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yunpeng QU1,2(),Bingxing ZHANG1,2,Jinbiao SHI1,2,Xiuniang TAN1,2,Buxing HAN1,2,Guanying YANG1,Jianling ZHANG1,2()
Received:
2019-10-23
Revised:
2019-11-07
Online:
2020-01-05
Published:
2020-01-05
Contact:
Jianling ZHANG
曲云鹏1,2(),张丙兴1,2,石金彪1,2,谭秀娘1,2,韩布兴1,2,杨冠英1,张建玲1,2()
通讯作者:
张建玲
作者简介:
曲云鹏(1997—),男,学士,基金资助:
CLC Number:
Yunpeng QU, Bingxing ZHANG, Jinbiao SHI, Xiuniang TAN, Buxing HAN, Guanying YANG, Jianling ZHANG. Study on modification of titanium-based metal-organic framework and catalytic performance[J]. CIESC Journal, 2020, 71(1): 283-289.
曲云鹏, 张丙兴, 石金彪, 谭秀娘, 韩布兴, 杨冠英, 张建玲. 钛基金属-有机框架材料的改性及其催化性能研究[J]. 化工学报, 2020, 71(1): 283-289.
Add to citation manager EndNote|Ris|BibTeX
样品编号 | NH2-MIL-125质量/g | 双氧水体积/ml | 处理温度/℃ |
---|---|---|---|
1 | 1.0 | 10 | 50 |
2 | 1.0 | 20 | 50 |
3 | 1.0 | 30 | 50 |
4 | 1.0 | 10 | 70 |
5 | 1.0 | 10 | 90 |
Table 1 Modification condition of samples
样品编号 | NH2-MIL-125质量/g | 双氧水体积/ml | 处理温度/℃ |
---|---|---|---|
1 | 1.0 | 10 | 50 |
2 | 1.0 | 20 | 50 |
3 | 1.0 | 30 | 50 |
4 | 1.0 | 10 | 70 |
5 | 1.0 | 10 | 90 |
1 | Furukawa H, Cordova K E, keeffe M O, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444. |
2 | Howarth A J, Liu Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks [J]. Nature Reviews Materials, 2016, 1(3): 15018. |
3 | Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution [J]. Nature Energy, 2016, 1(12): 16184. |
4 | Huang G, Yang Q, Xu Q, et al. Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrophobization [J]. Angewandte Chemie International Edition, 2016, 55(26): 7379-7383. |
5 | Zlotea C, Phanon D, Mazaj M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs [J]. Dalton Transactions, 2011, 40(18): 4879-4881. |
6 | Zhang B, Zhang J, Tan X, et al. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production [J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16418-16423. |
7 | Im J H, Kang E, Yang S J, et al. Simple preparation of anatase titanium dioxide nanoparticles by heating titanium-organic frameworks [J]. Bulletin of the Korean Chemical Society, 2014, 35(8): 2477-2480. |
8 | Ao D, Zhang J, Liu H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti) [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 524-533. |
9 | Fu Y, Sun L, Yang H, et al. Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti) [J]. Applied Catalysis B: Environmental, 2016, 187: 212-217. |
10 | Han Y, Han L, Zhang L, et al. Ultrasonic synthesis of highly dispersed Au nanoparticles supported on Ti-based metal-organic frameworks for electrocatalytic oxidation of hydrazine [J]. Journal of Materials Chemistry A, 2015, 3(28): 14669-14674. |
11 | Horiuchi Y, Toyao T, Saito M, et al. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(Ⅳ) metal-organic framework [J]. The Journal of Physical Chemistry C, 2012, 116(39): 20848-20853. |
12 | Hou C, Xu Q, Wang Y, et al. Synthesis of Pt@NH2-MIL-125(Ti) as a photocathode material for photoelectrochemical hydrogen production [J]. RSC Advances, 2013, 3(43): 19820-19823. |
13 | Isaka Y, Kondo Y, Kawase Y, et al. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles [J]. Chemical Communications, 2018, 54(67): 9270-9273. |
14 | Khaletskaya K, Pougin A, Medishetty R, et al. Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles [J]. Chemistry of Materials, 2015, 27(21): 7248-7257. |
15 | Nasalevich M A, Becker R, Ramos-Fernandez E V, et al. Co@NH2-MIL-125(Ti): cobaloxime-derived metal-organic framework-based composite for light-driven H2 production [J]. Energy & Environmental Science, 2015, 8(1): 364-375. |
16 | Puthiaraj P, Ahn W S. Highly active palladium nanoparticles immobilized on NH2-MIL-125 as efficient and recyclable catalysts for Suzuki-Miyaura cross coupling reaction [J]. Catalysis Communications, 2015, 65: 91-95. |
17 | Sun D, Liu W, Fu Y, et al. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au) [J]. Chemistry, 2014, 20(16): 4780-4788. |
18 | Wang M, Yang L, Hu B, et al. A novel electrochemical sensor based on Cu3P@NH2-MIL-125(Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine [J]. Applied Surface Science, 2018, 445: 123-132. |
19 | Wang M, Yang L, Yuan J, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(Ⅵ) reduction and rhodamine B degradation under visible light [J]. RSC Advances, 2018, 8(22): 12459-12470. |
20 | Wu Z, Huang X, Zheng H, et al. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light [J]. Applied Catalysis B: Environmental, 2018, 224: 479-487. |
21 | Nasalevich M A, Goesten M G, Savenije T J, et al. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis [J]. Chemical Communications, 2013, 49(90): 10575-10577. |
22 | Smalley A P, Reid D G, Tan J C, et al. Alternative synthetic methodology for amide formation in the post-synthetic modification of Ti-MIL125-NH2 [J]. CrystEngComm, 2013, 15(45): 9368-9371. |
23 | Fu Y, Sun D, Chen Y, et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction [J]. Angewandte Chemie International Edition, 2012, 51(14): 3420-3423. |
24 | Kim S N, Kim J, Kim H Y, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125 [J]. Catalysis Today, 2013, 204: 85-93. |
25 | Sun Y, Hu S, Song C, et al. Two-dimensional transition metal dichalcogenides as metal sources of metal-organic frameworks [J]. Chemical Communications, 2018, 54(29): 3664-3667. |
26 | Wang H, Yuan X, Wu Y, et al. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2015, 286: 187-194. |
27 | Zhang Y, Chen Y, Zhang Y, et al. A novel humidity sensor based on NH2-MIL-125 (Ti) metal organic framework with high responsiveness [J]. Journal of Nanoparticle Research, 2013, 15(10): 2014. |
28 | Zhu J, Li P Z, Guo W, et al. Titanium-based metal-organic frameworks for photocatalytic applications [J]. Coordination Chemistry Reviews, 2018, 359: 80-101. |
29 | She H, Zhou H, Li L, et al. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11939-11948. |
30 | Tan L L, Ong W J, Chai S P, et al. Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2 [J]. Chemical Communications, 2014, 50(52): 6923-6926. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||