1 |
Saarinen V, Himanen O, Kallio T, et al. A 3D model for the free-breathing direct methanol fuel cell: methanol crossover aspects and validations with current distribution measurements[J]. Journal of Power Sources, 2007, 172(2): 805-815.
|
2 |
Sundarrajan S, Allakhverdiev S I, Ramakrishna S. Progress and perspectives in micro direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8765-8786.
|
3 |
Ye D D, Zhu X, Liao Q, et al. Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells[J]. Journal of Power Sources, 2009, 192(2): 502-514.
|
4 |
Zhu Q Y, Gao Y B, Yu B W, et al. Self-priming compartmentalization digital LAMP for point-of-care[J]. Lab on a Chip, 2012, 12(22): 4755-4763.
|
5 |
Morier P, Vollet C, Michel P E, et al. Gravity‐induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme‐linked immunosorbent assay tests[J]. Electrophoresis, 2004, 25(21/22): 3761-3768.
|
6 |
Zhou C, Mu Y, Yang M C, et al. A gravity-induced flow injection system for surface plasmon resonance biosensor[J]. Talanta, 2013, 112: 95-100.
|
7 |
Arun R K, Halder S, Chanda N, et al. A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes[J]. Lab on a Chip, 2014, 14(10): 1661-1664.
|
8 |
Li X, Tian J F, Shen W. Thread as a versatile material for low-cost microfluidic diagnostics[J]. ACS Applied Materials & Interfaces, 2009, 2(1): 1-6.
|
9 |
Agustini D, Bergamini M F, Marcolino-Junior L H. Low cost microfluidic device based on cotton threads for electroanalytical application[J]. Lab on a Chip, 2016, 16(2): 345-352.
|
10 |
Qin L D, Vermesh O, Shi Q H, et al. Self-powered microfluidic chips for multiplexed protein assays from whole blood[J]. Lab on a Chip, 2009, 9(14): 2016-2020.
|
11 |
Agustini D, Bergamini M F, Marcolino-Junior L H. Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis[J]. Biosensors and Bioelectronics, 2017, 98: 161-167.
|
12 |
Caetano F R, Carneiro E A, Agustini D, et al. Combination of electrochemical biosensor and textile threads: a microfluidic device for phenol determination in tap water[J]. Biosensors and Bioelectronics, 2018, 99: 382-388.
|
13 |
Liu Z F, Ye D D, Chen R, et al. A woven thread-based microfluidic fuel cell with graphite rod electrodes[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22467-22473.
|
14 |
Domalaon K, Tang C, Mendez A, et al. Fabric-based alkaline direct formate microfluidic fuel cells[J]. Electrophoresis, 2017, 38(8): 1224-1231.
|
15 |
Wu R, Ye D D, Chen R, et al. A membraneless microfluidic fuel cell with continuous multi-stream flow through cotton threads[J]. International Journal of Energy Research. 2020, 44(3): 2243-2251.
|
16 |
Chen S Y, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364.
|
17 |
Joshi A S, Grew K N, Peracchio A A, et al. Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode[J]. Journal of Power Sources, 2007, 164(2): 631-638.
|
18 |
Chen L, Luan H B, He Y L, et al. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields[J]. International Journal of Thermal Sciences, 2012, 51: 132-144.
|
19 |
Zhang D, Cai Q, Gu S. Three-dimensional lattice-Boltzmann model for liquid water transport and oxygen diffusion in cathode of polymer electrolyte membrane fuel cell with electrochemical reaction[J]. Electrochimica Acta, 2018, 262: 282-296.
|
20 |
Molaeimanesh G R, Bamdezh M A, Nazemian M. Impact of catalyst layer morphology on the performance of PEM fuel cell cathode via lattice Boltzmann simulation[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20959-20975.
|
21 |
Seta T, Takegoshi E, Okui K. Lattice Boltzmann simulation of natural convection in porous media[J]. Mathematics and Computers in Simulation, 2006, 72(2/3/4/5/6): 195-200.
|
22 |
Gao J F, Xing H L, Tian Z W, et al. Lattice Boltzmann modeling and evaluation of fluid flow in heterogeneous porous media involving multiple matrix constituents[J]. Computers & Geosciences, 2014, 62: 198-207.
|
23 |
Yi J, Xing H L. Finite element lattice Boltzmann method for fluid flow through complex fractured media with permeable matrix[J]. Advances in Water Resources, 2018, 119: 28-40.
|
24 |
Nithiarasu P, Seetharamu K N, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium[J]. International Journal of Heat and Mass Transfer, 1997, 40(16): 3955-3967.
|
25 |
Vafai K. Convective flow and heat transfer in variable-porosity media[J]. Journal of Fluid Mechanics, 1984, 147: 233-259.
|
26 |
Guo Z L, Zhao T S. Lattice Boltzmann model for incompressible flows through porous media[J]. Physical Review E, 2002, 66(3): 036304.
|
27 |
Inamuro T. A lattice kinetic scheme for incompressible viscous flows with heat transfer[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 360(1792): 477-484.
|
28 |
Yang X G, Shi B C, Chai Z H. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations[J]. Physical Review E, 2014, 90(1): 013309.
|
29 |
Lei T M, Meng X H, Guo Z L. Pore-scale study on reactive mixing of miscible solutions with viscous fingering in porous media[J]. Computers & Fluids, 2017, 155: 146-160.
|
30 |
Kang Q J, Lichtner P C, Zhang D X. Lattice Boltzmann pore‐scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5):B05203.
|
31 |
Chen L, Luan H B, Feng Y L, et al. Coupling between finite volume method and lattice Boltzmann method and its application to fluid flow and mass transport in proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3834-3848.
|
32 |
Bazylak A, Sinton D, Djilali N. Improved fuel utilization in microfluidic fuel cells: a computational study[J]. Journal of Power Sources, 2005, 143(1/2): 57-66.
|