CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3266-3277.DOI: 10.11949/0438-1157.20191076
• Energy and environmental engineering • Previous Articles Next Articles
Wei CHEN(),Meihong YU,Hongxia ZHAO()
Received:
2019-10-07
Revised:
2020-04-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Hongxia ZHAO
通讯作者:
赵红霞
作者简介:
陈威(1994—),男,硕士,基金资助:
CLC Number:
Wei CHEN, Meihong YU, Hongxia ZHAO. Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector[J]. CIESC Journal, 2020, 71(7): 3266-3277.
陈威, 于梅红, 赵红霞. 优化控制R744多喷射器双温超市制冷系统[J]. 化工学报, 2020, 71(7): 3266-3277.
Add to citation manager EndNote|Ris|BibTeX
系统 | 关联式 | 应用范围 |
---|---|---|
PCR系统 | ||
MEBR系统 | ||
二氧化碳循环中温零售食品制冷系统的优化控制[ | ||
for subcritical | ||
for transcritical | ||
常规增压制冷系统[ | ||
二氧化碳的解决方案[ | ||
R744增压系统[ | ||
for standard transcritical booster system | ||
for transcritical booster system with bypass compressor | ||
for transcritical booster system with upstream expansion valve |
Table 1 Summary of some important correlations of Gas coolers/condensers
系统 | 关联式 | 应用范围 |
---|---|---|
PCR系统 | ||
MEBR系统 | ||
二氧化碳循环中温零售食品制冷系统的优化控制[ | ||
for subcritical | ||
for transcritical | ||
常规增压制冷系统[ | ||
二氧化碳的解决方案[ | ||
R744增压系统[ | ||
for standard transcritical booster system | ||
for transcritical booster system with bypass compressor | ||
for transcritical booster system with upstream expansion valve |
33 | Lucas C, Koehler J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector[J]. International Journal of Refrigeration, 2012, 35(6): 1595-1603. |
34 | Gullo P, Elmegaard B, Cortella G. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates[J]. International Journal of Refrigeration, 2016, 64: 61-79. |
1 | Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone[J]. Nature, 1974, 249(5460): 810-812. |
2 | Purohit N, Gullo P, Dasgupta M S. Comparative assessment of low-GWP based refrigerating plants operating in hot climates[J]. Energy Procedia, 2017, 109: 138-145. |
3 | Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1247-1264. |
4 | Mota-Babiloni A, Navarro-Esbrí J, Á Barragán-Cervera, et al. Commercial refrigeration—an overview of current status[J]. International Journal of Refrigeration, 2015, 57: 186-196. |
5 | Makhnatch P, Mota-Babiloni A, Rogstam J, et al. Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system[J]. International Journal of Refrigeration, 2017, 76: 184-192. |
6 | Sun Z, Wang Q, Dai B, et al. Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system[J]. International Journal of Refrigeration, 2019, 100: 471-483. |
7 | Ge Y T, Tassou S A. Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems[J]. International Journal of Refrigeration, 2009, 32(6): 1376-1388. |
8 | Tsamos K M, Ge Y T, Santosa I, et al. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates[J]. Energy Conversion and Management, 2017, 150: 822-829. |
9 | Llopis R, Sanchez D, Sanz-Kock C, et al. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems[J]. Applied Energy, 2015, 138: 133-142. |
10 | Sharma V, Fricke B, Bansal P. Comparative analysis of various CO2 configurations in supermarket refrigeration systems[J]. International Journal of Refrigeration, 2014, 46: 86-99. |
11 | Gupta D K, Dasgupta M S. Simulation and performance optimization of finned tube gas cooler for trans-critical CO2 refrigeration system in Indian context[J]. International Journal of Refrigeration, 2014, 38: 153-167. |
12 | Chesi A, Esposito F, Ferrara G, et al. Experimental analysis of R744 parallel compression cycle[J]. Applied Energy, 2014, 135: 274-285. |
13 | Yu B, Yang J, Wang D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: 116147. |
14 | Nakagawa M, Marasigan A R, Matsukawa T, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger[J]. International Journal of Refrigeration, 2011, 34(7): 1604-1613. |
15 | Gullo P, Hafner A, Cortella G. Multi-ejector R744 booster refrigerating plant and air conditioning system integration—a theoretical evaluation of energy benefits for supermarket applications[J]. International Journal of Refrigeration, 2017, 75: 164-176. |
16 | Zhang Z, Feng X, Tian D, et al. Progress in ejector-expansion vapor compression refrigeration and heat pump systems[J]. Energy Conversion and Management, 2020, 207: 112529. |
17 | Ghaebi H, Rostamzadeh H. Design and optimization of a novel dual-loop bi-evaporator ejection/compression refrigeration cycle[J]. Applied Thermal Engineering, 2019, 151: 240-261. |
18 | Gullo P, Hafner A, Banasiak K. Transcritical R744 refrigeration systems for supermarket applications: current status and future perspectives[J]. International Journal of Refrigeration, 2018, 93: 269-310. |
19 | Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422. |
20 | Haida M, Banasiak K, Smolka J, et al. Experimental analysis of the R744 vapour compression rack equipped with the multi-ejector expansion work recovery module[J]. International Journal of Refrigeration, 2016, 64: 93-107. |
21 | Hafner A, Försterling S, Banasiak K. Multi-ejector concept for R-744 supermarket refrigeration[J]. International Journal of Refrigeration, 2014, 43: 1-13. |
22 | Geng L, Liu H, Wei X, et al. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle[J]. Energy Conversion and Management, 2016, 130: 71-80. |
23 | Lawrence N, Elbel S. Experimental investigation on control methods and strategies for off-design operation of the transcritical R744 two-phase ejector cycle[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 106: 570-582. |
24 | Ge Y T, Tassou S A. Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket[J]. Energy Conversion and Management, 2011, 52(4): 1868-1875. |
25 | 王振超, 陈江平, 陈洪祥, 等. CO2在大、中型超市制冷系统中的应用[J]. 制冷技术, 2009, (1): 33-39. |
Wang Z C, Chen J P, Chen H X, et al. Application of CO2 in refrigeration systems of large/medium size supermarkets[J]. Refrigeration technology, 2009, (1): 33-39. | |
26 | 魏晋, 李涛, 唐黎明, 等. 四种跨临界CO2压缩式热泵系统的热力性能研究[J]. 制冷与空调(北京), 2014, 14: 94-103. |
Wei J, li T, Tang L M, et al. Study on thermodynamic performance of four different types of transcritical CO2 compression heat pump systems[J]. Refrigeration and Air conditioning (Beijing), 2014, 14: 94-103. | |
27 | Zhao H, Zhang K, Wang L, et al. Thermodynamic investigation of a booster-assisted ejector refrigeration system[J]. Applied Thermal Engineering, 2016, 104: 274-281. |
28 | Haida M, Smolka J, Palacz M, et al. Numerical investigation of an R744 liquid ejector for supermarket refrigeration systems[J]. Thermal Science, 2016, 20(4): 1259-1269. |
29 | Minetto S, Brignoli R, Zilio C, et al. Experimental analysis of a new method for overfeeding multiple evaporators in refrigeration systems[J]. International Journal of Refrigeration, 2014, 38: 1-9. |
30 | Ge Y, Cropper R. Air-cooled condensers in retail systems using R22 and R404A refrigerants[J]. Applied Energy, 2004, 78(1): 95-110. |
31 | Girotto S, Minetto S, Neksa P. Commercial refrigeration system using CO2 as the refrigerant[J]. International Journal of Refrigeration, 2004, 27(7): 717-723. |
32 | Llopis R, Nebot-Andrés L, Cabello R, et al. Experimental evaluation of a CO2 transcritical refrigeration plant with dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2016, 69: 361-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||