1 |
Huang G Y, Xu S M, Lu S S, et al. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries[J]. ACS Applied Materials Interfaces, 2014, 6(10): 7236-7243.
|
2 |
Li Z, Cao T T, Zhang Y, et al. Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether ether ketone)[J]. Journal of Membrane Science, 2017, 540: 422-429.
|
3 |
Tan G Q, Wu F, Yuan Y F, et al. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes[J]. Nature Communications, 2016, 7: 11774.
|
4 |
Zhu J, Wang T, Fan F R, et al. Atomic-scale control of silicon expansion space as ultrastable battery anodes[J]. ACS Nano, 2016, 10(9): 8243-8251.
|
5 |
Zuo X X, Zhu J, Buschbaum P M, et al. Silicon based lithium-ion battery anodes: a chronicle perspective review[J]. Nano Energy, 2017, 31: 113-143.
|
6 |
Cao Z Y, Xu P Y, Zhai H W, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240.
|
7 |
Idrees M, Batool S, Kong J, et al. Polyborosilazane derived ceramics - nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries[J]. Electrochimica Acta, 2019, 296: 925-937.
|
8 |
Lee B S, Son S B, Park K M, et al. Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode[J]. Journal of Power Sources, 2012, 206: 267-273.
|
9 |
Sourice J, Quinsac A, Leconte Y, et al. One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries[J]. ACS Applied Materials Interfaces, 2015, 7(12): 6637-6644.
|
10 |
Wu H, Zheng G Y, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2012, 12(2): 904-909.
|
11 |
Sui D, Xie Y Q, Zhao W M, et al. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell[J]. Journal of Power Sources, 2018, 384: 328-333.
|
12 |
杜霞. 锂离子电池硅负极活性材料的改性研究[D]. 成都: 电子科技大学, 2014.
|
|
Du X. The modification of silicon as anodic active materials for lithium-ion batteries[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
|
13 |
Forney M W, Ganter M J, Staub J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)[J]. Nano Letters, 2013, 13(9): 4158-4163.
|
14 |
Liu Z H, Guan D D, Yu Q, et al. Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries[J]. Energy Storage Materials, 2018, 13: 112-118.
|
15 |
Rahman A, Song G S, Bhatt A I, et al. Nanostructured silicon anodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(5): 647-678.
|
16 |
Song H C, Wang S, Song X Y, et al. A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2018, 6(17): 7877-7886.
|
17 |
Zheng G R, Xiang Y X, Xu L F, et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(29): 1801718.
|
18 |
Zhou X S, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(9): 1086-1090.
|
19 |
Cui L F, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2009, 9(1): 491-495.
|
20 |
Yang J P, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
|
21 |
Chen S Q, Shen L F, van Aken P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials, 2017, 29(21): 1605650.
|
22 |
Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
|
23 |
Liu N, Wu H, McDowell M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315-3321.
|
24 |
Liu R P, Shen C, Dong Y, et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14797-14804.
|
25 |
Weng W, Lin H J, Chen X L, et al. Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes[J]. Journal of Materials Chemistry A, 2014, 2(24): 9306-9312.
|
26 |
Cui L F, Hu L B, Choi J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. ACS Nano, 2010, 4(7): 3671-3678.
|
27 |
Yildiz O, Dirican M, Fang X M, et al. Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes[J]. Journal of The Electrochemical Socirty, 2019, 166(4): A473-A479.
|
28 |
Wang Y, Guo J H, Li L, et al. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications[J]. Nanotechnology, 2017, 28(34): 345703.
|
29 |
Yu Y L, Li G, Zhou S, et al. Self-adaptive Si/reduced graphene oxide scrolls for high-performance Li-ion battery anodes[J]. Carbon, 2017, 120: 397-404.
|
30 |
Han Y, Zou J D, Li Z, et al. Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries[J]. ACS Nano, 2018, 12(5): 4835-4843.
|