CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5099-5106.DOI: 10.11949/0438-1157.20200194
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Gang WANG1(),Yaxuan XIONG1(),Yuting WU2,Peng XU1,Guanghui LENG3,Chongfang MA2
Received:
2020-02-07
Revised:
2020-06-28
Online:
2020-11-05
Published:
2020-11-05
Contact:
Yaxuan XIONG
王刚1(),熊亚选1(),吴玉庭2,徐鹏1,冷光辉3,马重芳2
通讯作者:
熊亚选
作者简介:
王刚(1985—),男,讲师,基金资助:
CLC Number:
Gang WANG,Yaxuan XIONG,Yuting WU,Peng XU,Guanghui LENG,Chongfang MA. Startup and isothermal performance of high-temperature molten salt heat pipe[J]. CIESC Journal, 2020, 71(11): 5099-5106.
王刚,熊亚选,吴玉庭,徐鹏,冷光辉,马重芳. 高温熔盐热管的启动和等温性能[J]. 化工学报, 2020, 71(11): 5099-5106.
主要部件 | 型号 | 转速/(r·min-1) | 抽气速度/(L·s-1) | 关气镇极限 全压力/Pa | 气镇极限 全压力/Pa | 气镇极限 分压力/Pa |
---|---|---|---|---|---|---|
机械泵 | RVP-2 | 1400 | 2 | 4×10-2 | 3 | 1.2 |
Table 1 The model of mechannical vaccum pump and working parameters
主要部件 | 型号 | 转速/(r·min-1) | 抽气速度/(L·s-1) | 关气镇极限 全压力/Pa | 气镇极限 全压力/Pa | 气镇极限 分压力/Pa |
---|---|---|---|---|---|---|
机械泵 | RVP-2 | 1400 | 2 | 4×10-2 | 3 | 1.2 |
主要部件 | 型号 | 极限压力/Pa | 抽气速度/(L·s-1) | 最大排气压力/Pa | 加热功率/kW | 冷却水耗量/(L·s-1) |
---|---|---|---|---|---|---|
扩散泵 | KT-150 | 5×10-4 | 1000 | 40 | 1.0 | 0.083 |
Table 2 The model of diffusion pump and working parameters
主要部件 | 型号 | 极限压力/Pa | 抽气速度/(L·s-1) | 最大排气压力/Pa | 加热功率/kW | 冷却水耗量/(L·s-1) |
---|---|---|---|---|---|---|
扩散泵 | KT-150 | 5×10-4 | 1000 | 40 | 1.0 | 0.083 |
主要部件 | 型号 | 炉口直径/mm | 炉膛内高/mm | 额定功率/kW | 最大工作温度/℃ | 额定工作温度/℃ |
---|---|---|---|---|---|---|
电加热炉 | SG2-7 | 30 | 1000 | 7 | 1000 | 1300 |
Table 3 The model of electric heating furnace and working parameters
主要部件 | 型号 | 炉口直径/mm | 炉膛内高/mm | 额定功率/kW | 最大工作温度/℃ | 额定工作温度/℃ |
---|---|---|---|---|---|---|
电加热炉 | SG2-7 | 30 | 1000 | 7 | 1000 | 1300 |
工质 | 熔点/K | 沸点/K | 临界温度/K | 临界压力/atm | 熔化潜热/ (kJ·kg-1) | 液态密度/(kg·m-3) | 表面张力/(N·m-1) | 充注量 |
---|---|---|---|---|---|---|---|---|
AlBr3 | 370.6 | 537.0 | 763.0 | 28.5 | 85.5 | 2331(400 K) | 0.016(400 K) | 200 g |
TiCl4 | 248.0 | 409.5 | 638.0 | 46.0 | 190.0 | 1543(400 K) | 0.0211(400 K) | 30 ml |
C10H8 | 353.5 | 491.0 | 748.0 | 40.5 | 19.18 | 4788(400 K) | 0.0240(400 K) | 200 g |
Table 4 Basic characteristics of working fluid of heat pipe
工质 | 熔点/K | 沸点/K | 临界温度/K | 临界压力/atm | 熔化潜热/ (kJ·kg-1) | 液态密度/(kg·m-3) | 表面张力/(N·m-1) | 充注量 |
---|---|---|---|---|---|---|---|---|
AlBr3 | 370.6 | 537.0 | 763.0 | 28.5 | 85.5 | 2331(400 K) | 0.016(400 K) | 200 g |
TiCl4 | 248.0 | 409.5 | 638.0 | 46.0 | 190.0 | 1543(400 K) | 0.0211(400 K) | 30 ml |
C10H8 | 353.5 | 491.0 | 748.0 | 40.5 | 19.18 | 4788(400 K) | 0.0240(400 K) | 200 g |
1 | Vasiliev L L. Heat pipes in modern heat exchangers[J]. Applied Thermal Engineering, 2005, 25(1): 1-19. |
2 | Lin S, Broadbent J, Mcglen R. Numerical study of heat pipe application in heat recovery systems[J]. Applied Thermal Engineering, 2005, 25(1): 127-133. |
3 | Orr B, Akbarzandeh A, Mochizuki M, et al. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes[J]. Applied Thermal Engineering, 2016, 101: 490-495. |
4 | Pastukhov V G, Maidanik Y F, Vershinin C V, et al. Miniature loop heat pipes for electronics cooling[J]. Applied Thermal Engineering, 2003, 23(9): 1125-1135. |
5 | Zhang H, Zhuang J. Research, development and industrial application of heat pipe technology in China[J]. Applied Thermal Engineering, 2003, 23(9): 1067-1083. |
6 | El-baky M A A, Mohamed M M. Heat pipe heat exchanger for heat recovery in air conditioning[J]. Applied Thermal Engineering, 2007, 27(4): 795-801. |
7 | Shabgard H, Bergman T L, Sharifin N, et al. High temperature latent heat thermal energy storage using heat pipes[J]. International Journal of Heat and Mass Transfer, 2010, 53(15): 2979-2988. |
8 | Amini A, Miller J, Jouhara H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy, 2017, 136: 163-172. |
9 | Reid I, Merrigan M A. Heat pipe activity in the Americas—1990 to 1995[C]//Proceedings of the Ⅸ International Heat Pipe Conference. New Mexico: Los Alamos National Laboratory, 1997: 1-28. |
10 | Rosenfeld J H, Ernst D M, Lindemuth J E, et al. An overview of long duration sodium heat pipe tests[C]//AIP Conference Proceedings. New Mexico: American Institute of Physics, 2004: 140-147. |
11 | Merrigan M, Dunwoody W, Lundberg L. Heat pipe development for high temperature recuperator application[C]//Proceedings of the Ⅳth International Heat Pipe Conference. London, UK: Advances in Heat Pipe Technology, 1981: 245-257. |
12 | Mahjouri F. Vacuum tube liquid-vapor (heat-pipe) collectors[C]//Proceedings of the Solar Conference. American Solar Energy Society; American Institute of Architects, 2004: 341-346. |
13 | Tolubinskii V, Shevchuk E, Stambrovskii V. Study of liquid-metal heat pipes characteristics at start-up and operation under gravitation[C]//3rd International Heat Pipe Conference. Palo Alto, CA, USA, 1978: 274-282. |
14 | Lorenzin N, Abánades A. A review on the application of liquid metals as heat transfer fluid in concentrated solar power technologies[J]. International Journal of Hydrogen Energy, 2016, 41(17): 6990-6995. |
15 | Lyon R N, Poppendiek H. Liquid-metal Heat Transfer[M]//Liquid-metals Handbook. Washington: Government Printing Office, 1951: 184. |
16 | 杨武龙, 姜洪涛, 吴靥汝, 等. 熔盐在新能源领域的应用[J]. 过程工程学报, 2012, 12(5): 893-900. |
Yang W L, Jiang H T, Wu Y R, et al. Progress in the application of molten salts for new energy profuction[J]. The Chinese Journal of Process Engineering, 2012, 12(5): 893-900. | |
17 | 路阳, 彭国伟, 王智平, 等. 熔融盐相变储热材料的研究现状及发展趋势[J]. 材料导报 A: 综述篇, 2011, 25(11): 39-42. |
Lu Y, Peng G W, Wang Z P, et al. A review on research for molten salt as a phase change meteria[J]. Material Guide A: Overview, 2011, 25(11): 39-42. | |
18 | 吴玉庭, 鹿院卫, 桑丽霞, 等. 高温熔盐传热蓄热的基础与应用研究[C]//第一届全国储能科学与技术大会. 北京, 2014. |
Wu Y T, Lu Y W, Sang L X, et al. Research on the basis and application of high-temperature molten salt heat transfer and storage[C]// The First National Conference on Energy Storage Science and Technology. Beijing, 2014. | |
19 | 熊亚选, 吴玉庭, 刘闪威, 等. 低熔点熔盐在槽式太阳能集热中的初步实验研究[J]. 太阳能学报, 2015, 36(1): 173-178. |
Xiong Y X, Wu Y T, Liu S W, et al. Preliminary experimental study of low melting-point molten salt in parabolic trough collectors[J]. Acta Energiae Solaris Sinica, 2015, 36(1): 173-178. | |
20 | 胡宝华, 丁静, 魏小兰, 等. 高温熔盐的热物性测试及热稳定性分析[J]. 无机盐工业, 2010, 42(1): 22-24. |
Hu B H, Ding J, Wei X L, et al. Test of thermalphysics and analysis on thermalstability of high temperature molten salt[J]. Inorganic Chemicals Industry, 2010, 42(1): 22-24. | |
21 | 杨进学. 熔融盐物性精度对传热特性影响分析及黏度推算[D]. 北京: 北京工业大学, 2012. |
Yang J X. Analysis of influence of molten salt physical property accuracy on heat transfer characteristics and viscosity estimation[D]. Beijing: Beijing University of Technology, 2012. | |
22 | Xiong Y, Wang Z, Wu Y, et al. Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants[J]. Applied Energy, 2019, 237: 171-179. |
23 | 马重芳, 吴玉庭, 孟强, 等. 一种熔盐重力热管: 103743273B[P]. 2015-07-01. |
Ma C F, Wu Y T, Meng Q, et al. Gravity heat pipe with molten salt: 103743273B[P]. 2015-07-01. | |
24 | 程进辉. 传蓄热熔盐的热物性研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2014. |
Cheng J H. Study on thermophysical properties of heat transfer and molten salt[D]. Shanghai: Graduate School of the Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2014. | |
25 | Wang X, Ma T, Zhu Y, et al. Experimental investigation on startup and thermal performance of a high temperature special-shaped heat pipe coupling the flat plate heat pipe and cylindrical heat pipes[J]. Experimental Thermal and Fluid Science, 2016, 77: 1-9. |
26 | Patel V M, Gaurav, Mehta H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577. |
27 | Yuan Y, Shan J, Zhang B, et al. Study on startup characteristics of heat pipe cooled and amtec conversion space reactor system[J]. Progress in Nuclear Energy, 2016, 86: 18-30. |
28 | 刘龙兵, 张喜春. 萘工质重力热管启动性能初步实验研究[J]. 河南科技, 2014, (22): 106-107. |
Liu L B, Zhang X C. Preliminary experimental study on the start-up performance of naphthalene working gravity heat pipe[J]. Henan Science and Technology, 2014, (22): 106-107. | |
29 | 李金旺, 戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术, 2019, 39(3): 30-42. |
Li J W, Dai S G. Research progress and prospect of high temperature heat pipe technology[J]. China Space Science and Technology, 2019, 39(3): 30-42. | |
30 | 孟强, 熊亚选, 吴玉庭, 等. 熔盐重力热管工质选择的初步实验研究[J]. 化工机械, 2015, 42(6): 759-763. |
Meng Q, Xiong Y X, Wu Y T, et al. Preliminary experimental study on working medium selection of molten salt gravity heat pipe[J]. Chemical Machinery, 2015, 42(6): 759-763. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[4] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[7] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[8] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[9] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[10] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[11] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[12] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[13] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[14] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[15] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 424
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||