CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1735-1745.DOI: 10.11949/0438-1157.20221646
• Energy and environmental engineering • Previous Articles Next Articles
Guohua SHI1,2(), Linshen HE1, Xiling ZHAO3(), Shigang ZHANG4
Received:
2022-12-29
Revised:
2023-03-14
Online:
2023-06-02
Published:
2023-04-05
Contact:
Guohua SHI, Xiling ZHAO
通讯作者:
时国华,赵玺灵
作者简介:
时国华(1980—),男,博士,副教授,lucksgh@126.com
基金资助:
CLC Number:
Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery[J]. CIESC Journal, 2023, 74(4): 1735-1745.
时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745.
Add to citation manager EndNote|Ris|BibTeX
工况条件 | 颗粒物脱除效率 | ||||
---|---|---|---|---|---|
喷淋水温/℃ | 烟气入口温度/℃ | 水气比/(L/m³) | 实验值/% | 计算值/% | 偏差/% |
10 | 48.0 | 1 | 85.2 | 81.5 | 4.3 |
10 | 48.2 | 1.5 | 98.5 | 95.4 | 3.1 |
10 | 48.4 | 2 | 98.7 | 97.2 | 1.5 |
10 | 49.2 | 3 | 99.2 | 99.1 | 0.1 |
20 | 48.2 | 1 | 76.6 | 73.6 | 3.9 |
20 | 47.8 | 1.5 | 89.2 | 86.6 | 2.9 |
20 | 47.7 | 2 | 97.0 | 93.6 | 3.5 |
20 | 47.8 | 3 | 98.1 | 97.2 | 0.9 |
Table 1 Comparison of simulation results and experimental data
工况条件 | 颗粒物脱除效率 | ||||
---|---|---|---|---|---|
喷淋水温/℃ | 烟气入口温度/℃ | 水气比/(L/m³) | 实验值/% | 计算值/% | 偏差/% |
10 | 48.0 | 1 | 85.2 | 81.5 | 4.3 |
10 | 48.2 | 1.5 | 98.5 | 95.4 | 3.1 |
10 | 48.4 | 2 | 98.7 | 97.2 | 1.5 |
10 | 49.2 | 3 | 99.2 | 99.1 | 0.1 |
20 | 48.2 | 1 | 76.6 | 73.6 | 3.9 |
20 | 47.8 | 1.5 | 89.2 | 86.6 | 2.9 |
20 | 47.7 | 2 | 97.0 | 93.6 | 3.5 |
20 | 47.8 | 3 | 98.1 | 97.2 | 0.9 |
参数 | 数值 |
---|---|
烟气参数 | |
烟气入口温度/℃ | 50 |
烟气入口相对湿度/% | 100 |
塔内烟气流速/(m/s) | 1 |
喷淋参数 | |
喷淋水温/℃ | 20 |
喷淋量/(t/h) | 22.6 |
水气比/(L/m³) | 2 |
喷淋水滴Sauter平均粒径/μm | 550 |
喷淋塔参数 | |
喷淋塔半径/m | 1 |
喷淋塔有效喷淋高度/m | 4 |
喷嘴数/个 | 45 |
Table 2 Values of parameters used in numerical simulation
参数 | 数值 |
---|---|
烟气参数 | |
烟气入口温度/℃ | 50 |
烟气入口相对湿度/% | 100 |
塔内烟气流速/(m/s) | 1 |
喷淋参数 | |
喷淋水温/℃ | 20 |
喷淋量/(t/h) | 22.6 |
水气比/(L/m³) | 2 |
喷淋水滴Sauter平均粒径/μm | 550 |
喷淋塔参数 | |
喷淋塔半径/m | 1 |
喷淋塔有效喷淋高度/m | 4 |
喷嘴数/个 | 45 |
1 | Wen C, Xu M H, Zhou K, et al. The melting potential of various ash components generated from coal combustion: indicated by the circularity of individual particles using CCSEM technology[J]. Fuel Processing Technology, 2015, 133: 128-136. |
2 | Huang Q, Li S Q, Li G D, et al. Mechanisms on the size partitioning of sodium in particulate matter from pulverized coal combustion[J]. Combustion and Flame, 2017, 182: 313-323. |
3 | 林秋寒, 陈姝芮, 屠征波, 等. 我国北方冬季灰霾主要有机单颗粒类型及耐热性[J]. 地球化学, 2022, 51(2): 243-250. |
Lin Q H, Chen S R, Tu Z B, et al. Morphology and heat resistance of the major organic particles in winter hazes of Northern China[J]. Geochimica, 2022, 51(2): 243-250. | |
4 | Bologa A, Paur H R, Seifert H, et al. Novel wet electrostatic precipitator for collection of fine aerosol[J]. Journal of Electrostatics, 2009, 67(2/3): 150-153. |
5 | 陈奎续. 超净电袋复合除尘技术的研究应用进展[J]. 中国电力, 2017, 50(3): 22-27. |
Chen K X. Research and application progress of ultra-clean electrostatic-fabric integrated precipitator technology[J]. Electric Power, 2017, 50(3): 22-27. | |
6 | 雒飞, 胡斌, 吴昊, 等. 湿式电除尘对PM2.5/SO3酸雾脱除特性的试验研究[J]. 东南大学学报(自然科学版), 2017, 47(1): 91-97. |
Luo F, Hu B, Wu H, et al. Experimental study on removal properties of PM2.5 and sulfuric acid mist by wet electrostatic precipitator[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1): 91-97. | |
7 | 徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640. |
Xu M H, Wang W Y, Wen C, et al. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proceedings of the CSEE, 2019, 39(22): 6627-6640. | |
8 | Zhou X, Liu H, Fu L, et al. Experimental study of natural gas combustion flue gas waste heat recovery system based on direct contact heat transfer and absorption heat pump[C]//Proceedings of ASME 2013 7th International Conference on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Minneapolis, Minnesota, USA, 2013. |
9 | 魏茂林, 付林, 赵玺灵, 等. 燃煤烟气余热回收与减排一体化系统应用研究[J]. 工程热物理学报, 2017, 38(6): 1157-1165. |
Wei M L, Fu L, Zhao X L, et al. Coal-fired boiler flue gas heat recovery system and its performance study[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1157-1165. | |
10 | 王静贻, 付林, 赵金姊, 等. 用于燃煤锅炉烟气余热回收的顺流烟气喷淋塔的实验与理论研究[J]. 工程热物理学报, 2018, 39(5): 1070-1077. |
Wang J Y, Fu L, Zhao J Z, et al. Theoretical and experimental studies of parallel-flow spray tower for surplus-heat recovery system of flue gas in coal-fired boilers[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1070-1077. | |
11 | Calvert S, Jhaveri N C. Flux force/condensation scrubbing[J]. Journal of the Air Pollution Control Association, 1974, 24(10): 946-951. |
12 | Calvert S, Gandhi S, Harmon D L, et al. FF/C scrubber demonstration on a secondary metals recovery furnace[J]. Journal of the Air Pollution Control Association, 1977, 27(11): 1076-1080. |
13 | Johannessen T, Christensen J A, Simonsen O, et al. The dynamics of aerosols in condensational scrubbers[J]. Chemical Engineering Science, 1997, 52(15): 2541-2556. |
14 | Heidenreich S, Vogt U, Büttner H, et al. A novel process to separate submicron particles from gases—a cascade of packed columns[J]. Chemical Engineering Science, 2000, 55(15): 2895-2905. |
15 | Feng Y P, Li Y Z, Cui L, et al. Cold condensing scrubbing method for fine particle reduction from saturated flue gas[J]. Energy, 2019, 171: 1193-1205. |
16 | Luo X S, Fan Y, Qin F H, et al. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle[J]. The Journal of Chemical Physics, 2014, 140(2): 024708. |
17 | 凡凤仙, 杨林军, 袁竹林, 等. 喷淋塔内可吸入颗粒物的脱除与凝结增长特性[J]. 化工学报, 2010, 61(10): 2708-2713. |
Fan F X, Yang L J, Yuan Z L, et al. Removal and condensation growth of inhalable particles in spray scrubber[J]. CIESC Journal, 2010, 61(10): 2708-2713. | |
18 | 王健, 潘伶, 王帅, 等. 工程相变凝并器内超细颗粒长大与脱除性能分析[J]. 化工学报, 2020, 71(11): 5090-5098. |
Wang J, Pan L, Wang S, et al. Analysis of ultrafine particles growth and removal in phase-transition agglomerator for engineering[J]. CIESC Journal, 2020, 71(11): 5090-5098. | |
19 | Mohan B R, Jain R K, Meikap B C. Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber[J]. Separation and Purification Technology, 2008, 63(2): 269-277. |
20 | Jung C H, Lee K W. Filtration of fine particles by multiple liquid droplet and gas bubble systems[J]. Aerosol Science and Technology, 1998, 29(5): 389-401. |
21 | Carotenuto C, Di Natale F, Lancia A. Wet electrostatic scrubbers for the abatement of submicronic particulate[J]. Chemical Engineering Journal, 2010, 165(1): 35-45. |
22 | Davenport H M, Peters L K. Field studies of atmospheric particulate concentration changes during precipitation[J]. Atmospheric Environment, 1978, 12(5): 997-1008. |
23 | 王翱, 宋蔷, 姚强. 脱硫塔内单液滴捕集颗粒物的数值模拟[J]. 工程热物理学报, 2014, 35(9): 1889-1893. |
Wang A, Song Q, Yao Q. Numerical simulation of single droplet capturing particles in the WFGD[J]. Journal of Engineering Thermophysics, 2014, 35(9): 1889-1893. | |
24 | Pilat M J, Prem A. Calculated particle collection efficiencies of single droplets including inertial impaction, Brownian diffusion, diffusiophoresis and thermophoresis[J]. Atmospheric Environment, 1976, 10(1): 13-19. |
25 | Bae S Y, Jung C H, Kim Y P. Relative contributions of individual phoretic effect in the below-cloud scavenging process[J]. Journal of Aerosol Science, 2009, 40(7): 621-632. |
26 | 张迪. 液滴曳力数值计算方法研究及在干燥器中的应用[D]. 北京: 清华大学, 2016: 70-71. |
Zhang D. Research on the numerical method to calculate the droplet’s drag force and its application on the steam drier[D]. Beijing: Tsinghua University, 2016: 70-71. | |
27 | Bergman T L, Bergman T L, Incropera F P, et al. Fundamentals of Heat and Mass Transfer[M]. 7th ed. New York: John Wiley & Sons, 2011: 876-890. |
28 | 盛裴轩, 毛节泰, 李建国. 大气物理学[M]. 2版. 北京: 北京大学出版社, 2013: 310-324. |
Sheng P X, Mao J T, Li J G. Atmospheric Physics[M]. 2nd ed. Beijing: Peking University Press, 2013: 310-324. | |
29 | 赵海波. 颗粒群平衡模拟的随机模型与燃煤可吸入颗粒物高效脱除的研究[D]. 武汉: 华中科技大学, 2007: 175-180. |
Zhao H B. Stochastic solution of population balance modeling and the research on high-efficiency removal of particulate matter from coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2007: 175-180. | |
30 | Yao S, Cheng S Y, Li J B, et al. Effect of wet flue gas desulfurization (WFGD) on fine particle (PM2.5) emission from coal-fired boilers[J]. Journal of Environmental Sciences, 2019, 77: 32-42. |
31 | 王翔, 王述浩, 段璐, 等. 相变凝聚器内湿烟气核化特性模拟研究[J]. 中国电机工程学报, 2020, 40(2): 574-583. |
Wang X, Wang S H, Duan L, et al. Nucleation characteristics simulation of wet flue gas in phase-change agglomerator[J]. Proceedings of the CSEE, 2020, 40(2): 574-583. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[3] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[6] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[7] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[8] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[9] | Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk [J]. CIESC Journal, 2023, 74(2): 861-870. |
[10] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
[11] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[12] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[13] | Junhui LU, Junming LI. Study on condensation heat transfer characteristics of H2O-CO2,H2O-N2, H2O-He on horizontal tube under free convection [J]. CIESC Journal, 2022, 73(9): 3870-3879. |
[14] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[15] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||