CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3585-3593.DOI: 10.11949/0438-1157.20200261
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Wenjun LIANG(),Yuxue ZHU,Xiujuan SHI,Huipin SUN,Sida REN
Received:
2020-03-16
Revised:
2020-06-02
Online:
2020-08-05
Published:
2020-08-05
Contact:
Wenjun LIANG
通讯作者:
梁文俊
作者简介:
梁文俊(1978—),男,教授, 基金资助:
CLC Number:
Wenjun LIANG, Yuxue ZHU, Xiujuan SHI, Huipin SUN, Sida REN. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts[J]. CIESC Journal, 2020, 71(8): 3585-3593.
梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593.
Add to citation manager EndNote|Ris|BibTeX
样品 | 转化率 | ||||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | 100% | |
0.4%Ru/TiO2 | DCB | DCB、TCB | DCB、PCB、BHC | DCB | — |
0.4%Ru-1.0%Ce/TiO2 | DCB | DCB | DCB | 苯 | — |
Table 1 Organic by-products at different conversion of chlorobenzene
样品 | 转化率 | ||||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | 100% | |
0.4%Ru/TiO2 | DCB | DCB、TCB | DCB、PCB、BHC | DCB | — |
0.4%Ru-1.0%Ce/TiO2 | DCB | DCB | DCB | 苯 | — |
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
TiO2 | 71.72 | 0.39 | 12.6 |
1.0%Ce/TiO2 | 70.02 | 0.37 | 15.8 |
0.4%Ru/TiO2 | 70.73 | 0.37 | 11.4 |
0.4%Ru-0.5%Ce/TiO2 | 69.30 | 0.38 | 14.8 |
0.4%Ru-1.0%Ce/TiO2 | 68.92 | 0.37 | 14.2 |
0.4%Ru-4.0%Ce/TiO2 | 67.42 | 0.36 | 14.4 |
Table 2 Specific surface area and pore structure of catalysts
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
TiO2 | 71.72 | 0.39 | 12.6 |
1.0%Ce/TiO2 | 70.02 | 0.37 | 15.8 |
0.4%Ru/TiO2 | 70.73 | 0.37 | 11.4 |
0.4%Ru-0.5%Ce/TiO2 | 69.30 | 0.38 | 14.8 |
0.4%Ru-1.0%Ce/TiO2 | 68.92 | 0.37 | 14.2 |
0.4%Ru-4.0%Ce/TiO2 | 67.42 | 0.36 | 14.4 |
1 | 杨一鸣, 崔积山, 童莉, 等. 美国VOCs定义演变历程对我国VOCs环境管控的启示[J]. 环境科学研究, 2017, 30(3): 368-379. |
Yang Y M, Cui J S, Tong L, et al. Evolution of the definition of volatile organic compounds in the United States and its implications for China[J]. Research of Environmental Sciences, 2017, 30(3): 368-379. | |
2 | Dai C H, Zhou Y Y, Peng H, et al. Current progress in remediation of chlorinated volatile organic compounds: a review[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 106-119. |
3 | 阚家伟, 李兵, 李林, 等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展, 2016, 35(2): 499-505. |
Kan J W, Li B, Li L, et al. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 499-505. | |
4 | 于旭霞, 冯俊小. 催化燃烧治理氯苯类挥发性有机化合物最新进展[J]. 化工进展, 2016, 35(5): 1514-1518. |
Yu X X, Feng J X. Recent process in the removal of chlorobenzenes volatile organic compounds by catalytic combustion[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1514-1518. | |
5 | Dai Q G, Bai S X, Wang Z, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts[J]. Applied Catalysis B: Environmental, 2012, 126: 64-75. |
6 | Huang B B, Lei C, Wei C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71: 118-138. |
7 | 陈立. Ru基催化剂对氯代挥发性有机物CVOCs的催化氧化研究[D]. 贵阳: 贵州大学, 2018. |
Chen L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018. | |
8 | Du C C, Lu S Y, Wang Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J].Chemical Engineering Journal, 2018, 334: 519-544. |
9 | Shi W B, Liu X L, Zeng J L, et al. Gas-solid catalytic reactions over ruthenium-based catalysts[J].Chinese Journal of Catalysis, 2016, 37(8): 1181-1192. |
10 | 梁文俊, 杜晓燕, 任思达, 等. Pd/Ce基催化剂催化氧化氯苯的性能[J]. 化工进展, 2019, 38 (10): 4574-4581. |
Liang W J, Du X Y, Ren S D, et al. Catalytic performance of Pd/Ce-based catalyst for oxidation of chlorobenzene[J]. Chemical Industry and Engineering Progress, 2019, 38 (10): 4574-4581. | |
11 | Lu L L, Wang C, Wang M, et al. Catalytic oxidation of trichloroethylene over RuO2 supported on ceria-zirconia mixed oxide[J].Chemical Research in Chinese Universities, 2019, 35(1): 71-78. |
12 | Chen Q Y, Li N, Luo M F, et al. Catalytic oxidation of dichloromethane over Pt/CeO2-Al2O3 catalysts [J].Applied Catalysis B: Environmental, 2012, 127: 159-166. |
13 | Liu X L, Chen L, Zhu T Y, et al. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products[J]. Journal of Hazardous Materials, 2019, 363: 90-98. |
14 | Wang J, Liu X L, Zeng J L, et al. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts[J]. Catalysis Communications, 2016, 76: 13-18. |
15 | 蒋熙云, 杨军, 刘雨溪, 等. 含氯挥发性有机物的催化氧化研究进展[J]. 工业催化, 2019, 27(8): 23-35. |
Jiang X Y, Yang J, Liu Y X, et al. Research advancements on catalytic oxidation of chlorinated volatile organic compounds[J]. Industrial Catalysis, 2019, 27(8): 23-35. | |
16 | Liu X L, Zeng J L, Shi W B, et al. Catalytic oxidation of benzene over ruthenium-cobalt bimetallic catalysts and study of its mechanism[J]. Catalysis Science & Technology, 2017, 7(1): 213-221. |
17 | Dai Q G, Wu J Y, Deng W, et al. Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: from effects of H2O to distribution of chlorinated by-products[J]. Applied Catalysis B: Environmental, 2019, 249: 9-18. |
18 | Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment[J]. Chemical Reviews, 2013, 113(6): 3949-3985. |
19 | 袁堃, 张亚文. 纳米氧化铈的缺陷化学及其在多相催化中作用的研究进展[J]. 中国稀土学报, 2020, (3): 326-344. |
Yuan K, Zhang Y W. The defect chemistry of ceria nanostructures and their applications in heterogeneous catalysis[J]. Journal of the Chinese Rare Earth Society, 2020, (3): 326-344 | |
20 | Hu Z, Wang Z, Guo Y, et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environmental Science & Technology, 2018, 52: 9531-9541. |
21 | 梁文俊, 任思达, 王昭艺, 等. Pt/Pt-Ce/γ-Al2O3催化氧化甲苯研究[J]. 工业催化, 2019, 27(11): 25-29. |
Liang W J, Ren S D, Wang Z Y, et al. Combustion of toluene over Pt/Pt-Ce/γ-Al2O3 catalysts[J]. Industrial Catalysis, 2019, 27(11): 25-29. | |
22 | Dai Q G, Bai S X, Wang J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2013, 142/143: 222-233. |
23 | Wang J, Zhao H N, Liu X L, et al. Study on the catalytic properties of Ru/TiO2 catalysts for the catalytic oxidation of (chloro)‑aromatics[J]. Catalysis Letters, 2019, 149: 2004-2014. |
24 | Lao Y J, Zhu N X, Jiang X X, et al. Effect of Ru on the activity of Co3O4 catalysts for chlorinated aromatics oxidation[J]. Catalysis Science & Technology, 2018, 8: 4797-4811. |
25 | Dai Q G, Bai S X, Wang X Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: mechanism study[J]. Applied Catalysis B: Environmental, 2013, 129: 580-588. |
26 | Kan J W, Deng L, Li B, et al. Performance of Co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A: General, 2017, 530: 21-29. |
27 | 王争一. Ru/Ce-Al2O3催化剂催化燃烧氯苯和二氯甲烷的研究[D]. 上海: 华东理工大学, 2012. |
Wang Z Y. Studies on catalytic combustion of chlorobenzene and dichloromethane over Ru/Ce-Al2O3 catalysts[D]. Shanghai: East China University of Science and Technology, 2012. | |
28 | Wang F, He S, Chen H, et al. Active site-dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. Journal of the American Chemical Society, 2016, 138(19): 6298-6305. |
29 | Liang W J, Du X Y, Zhu Y X, et al. Catalytic oxidation of chlorobenzene over Pd-TiO2/Pd-Ce/TiO2 catalysts[J]. Catalyst, 2020, 10(3): 347. |
30 | 任思达, 梁文俊, 王昭艺, 等. Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 2019, 39(7): 2774-2780. |
Ren S D, Liang W J, Wang Z Y, et al. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene[J]. China Environmental Science, 2019, 39(7): 2774-2780. | |
31 | Li W, Liu P C, Niu R Y, et al. Influence of CeO2 supports prepared with different precipitants over Ru/CeO2 catalysts for ammonia synthesis[J]. Solid State Sciences, 2020, 99: 105983. |
32 | 王岩. 氧化铈负载金属模型催化剂的表面科学研究[D]. 合肥: 中国科学技术大学, 2018. |
Wang Y. Surface science study of ceria-supported metal model catalysts[D]. Hefei: University of Science and Technology of China, 2018. | |
33 | Over H, Knapp M, Lundgren E, et al. Visualization of atomic processes on ruthenium dioxideusing scanning tunneling microscopy[J]. ChemPhysChem, 2004, 5: 167-174. |
34 | Okal J, Zawadzki M, Kepinski L, et al. The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts[J]. Applied Catalysis A: General, 2007, 319: 202-209. |
35 | Wang Y, Deng W, Wang Y F, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018, 459: 61-70. |
36 | 喻业茂. 催化剂颗粒内部毛细冷凝作用下的化学反应滞后研究[D]. 上海: 华东理工大学, 2012. |
Yu Y M. Chemical reaction hysteresis induced by capillary condensation within the catalyst pellets[D]. Shanghai: East China University of Science and Technology, 2012. | |
37 | Thommes M, Katsumi K, Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
38 | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京: 化学工业出版社, 2006: 57-81. |
Kondo S, Ishikawa T, Abe I. Adsorption Science[M]. Li G X, trans. 2nd ed. Beijing: Chemical Industry Press, 2006: 57-81. | |
39 | Lamonier J F, Nguyen T B, Franco M, et al. Influence of the meso-macroporous ZrO2-TiO2 calcination temperature on the pre-reduced Pd/ZrO2-TiO2 (1/1) performances in chlorobenzene total oxidation[J]. Catalysis Today, 2011, 164(1): 566-570. |
40 | Topka P, Delaigle R, Kaluza L, et al. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene [J]. Catalysis Today, 2015, 253: 172-177. |
41 | 司马晋强. 铈基氧化物表面氧空位的调控及其柴油机碳烟氧化催化性能研究[D]. 天津: 天津大学, 2017. |
Sima J Q. Regulation of ceria based oxides surface oxygen vacancies and the catalytic performance for diesel soot oxidation[D]. Tianjin: Tianjin University, 2017. | |
42 | Nakaji Y, Kobayashi D, Nakagawa Y, et al. Mechanism of formation of highly dispersed metallic ruthenium particles on ceria support by heating and reduction[J]. The Journal of Physical Chemistry, 2019, 123 (34): 20817-20828. |
43 | Zhang N, Du Y Y, Yin M, et al. Facile synthesis of supported RuO2‧xH2O nanoparticles on Co-Al hydrotalcite for the catalytic oxidation of alcohol: effect of temperature pretreatment[J]. RSC Advances, 2016, 6: 49588-49596. |
44 | 王健. 负载型钌催化剂对VOCs的催化氧化研究[D]. 北京: 中国科学院大学, 2016. |
Wang J. Study on supported ruthenium catalysts for the catalytic oxidation of VOCs[D]. Beijing: University of Chinese Academy of Sciences, 2016. | |
45 | Zeng M, Li Y Z, Mao M Y, et al. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites[J]. ACS Catalysis, 2015, 5(6): 3278-3286. |
46 | Hao H, Dai Q G, Wang X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158/159: 96-105. |
47 | 刘贵. 复合金属氧化物催化剂的制备及催化氧化性能的研究[D]. 南京: 南京师范大学, 2018. |
Liu G. Study on preparation and catalytic oxidation of composite metal oxide catalysts[D]. Nanjing: Nanjing Normal University, 2018. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[5] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[6] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[7] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[8] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[9] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[10] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[11] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[12] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[13] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[14] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[15] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||