CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5452-5460.DOI: 10.11949/0438-1157.20200444
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
LU Tianhong(),ZHOU Faxian,ZHUANG Dawei,DING Guoliang()
Received:
2020-04-29
Revised:
2020-06-29
Online:
2020-12-05
Published:
2020-12-05
Contact:
DING Guoliang
通讯作者:
丁国良
作者简介:
陆天宏(1995—),男,硕士研究生,基金资助:
CLC Number:
LU Tianhong,ZHOU Faxian,ZHUANG Dawei,DING Guoliang. Model of droplet shape on horizontal metal fiber in gravity field[J]. CIESC Journal, 2020, 71(12): 5452-5460.
陆天宏,周发贤,庄大伟,丁国良. 重力场中水平纤维悬垂液滴形状的模型研究[J]. 化工学报, 2020, 71(12): 5452-5460.
Add to citation manager EndNote|Ris|BibTeX
1 | Zhao C Y, Lu T J, Hodson H P. Thermal radiation in ultralight metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2004, 47: 2927-2939. |
2 | Muzychka Y S. Constructral multi-scale design of compact micro-tube heat sinks and heat exchangers[J]. International Journal of Thermal Sciences, 2007, 46: 245-252. |
3 | 李菊香, 涂善东. 多孔泡沫金属换热器内流体的流动和传热分析[J]. 石油化工高等学校学报, 2008, (2): 80-83+88. |
Li J X, Tu S D. Analysis on flow and heat transfer of fluid in porous metal foam heat exchanger[J]. Journal of Petrochemical Universities, 2008, (2): 80-83+88. | |
4 | Lai Z C, Hu H T, Ding G L, et al. Influence of pore density and porosity on the wet air flow in metal foam under different operation conditions[J]. International Journal of Refrigeration, 2018, (88): 117-128. |
5 | 屈治国, 徐治国, 陶文铨, 等. 通孔金属泡沫中的空气自然对流传热实验研究[J]. 西安交通大学学报, 2009, 43(1): 1-4. |
Qu Z G, Xu Z G, Tao W Q, et al. Experimental study of natural convective heat transfer in horizontally -positioned cellular metal foams with open cells[J]. Journal of Xian Jiaotong University, 2009, 43(1): 1-4. | |
6 | 朴勇日, 吴晓敏, 马强, 等. 填充泡沫铜圆管内R32单相流动换热[J]. 化工学报, 2017, 68(6): 2275-2279. |
Pak Y, Wu X M, Ma Q, et al. Single-phase heat transfer characteristics of R32 flowing through metallic foam filled channel[J]. CIESC Journal, 2017, 68(6): 2275-2279. | |
7 | Hu H T, Weng X M, Zhuang D W, et al. Heat transfer and pressure drop characteristics of wet air flow in metal foam under dehumidifying conditions[J]. Applied Thermal Engineering, 2016, 93: 1124-1134. |
8 | 汪双凤, 李炅, 张伟保. 开孔泡沫金属用于紧凑型热交换器的研究进展[J]. 化工进展, 2008, (5): 675-678. |
Wang S F, Li J, Zhang W B. Research progress of open cell metal foams used in compact heat exchanger[J]. Chemical Industry and Engineering Progress, 2008, (5): 675-678. | |
9 | 程文龙, 韩丰云, 韦文静. 单相流体通过多孔金属换热器换热性能的理论分析[J]. 化工学报, 2011, 62 (10): 2721-2725. |
Cheng W L, Han F Y, Wei W J. Theoretical analysis on heat transfer in porous metal foam heat exchanger[J]. CIESC Journal, 2011, 62(10): 2721-2725. | |
10 | 翁晓敏, 高扬, 许旭东, 等. 湿工况下泡沫金属内换热和压降的数值模拟和实验验证[J]. 化工学报, 2016, 67(4): 1193-1199. |
Weng X M, Gao Y, Xu X D, et al. Numerical simulation and experimental validation of heat transfer and pressure drop characteristics in metal foam under wet conditions [J]. CIESC Journal, 2016, 67(4): 1193-1199. | |
11 | Zhu Y, Hu H T, Sun S, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, (38): 215-226. |
12 | 程云, 李菊香, 莫光东. 水在开孔泡沫铜中的池沸腾传热特性[J]. 化工学报, 2013, 64(4): 1231-1235. |
Cheng Y, Li J X, Mo G D. Pool boiling heat transfer of water in porous copper foam[J]. CIESC Journal, 2013, 64(4): 1231-1235. | |
13 | 冀文涛, 屈治国, 郭剑飞, 等. 水平管外开孔铜泡沫R134a池沸腾换热实验研究[J]. 工程热物理学报, 2010, 31(7): 1185-1188. |
Ji W T, Qu Z G, Guo J F, et al. Pool boiling heat transfer of R134a outside horizontal open-cell copper foam tubes[J]. Journal of Engineering Thermophysics, 2010, 31(7): 1185-1188. | |
14 | Mohammad G, Zhang J. Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118832. |
15 | 彭冬华, 陈振乾, 施明恒. 泡沫金属内相变材料融化传热过程的数值模拟[J]. 工程热物理学报, 2009, 30(6): 1025-1028. |
Peng D H, Chen Z Q, Shi M H. Numerical simulation of phase change material thawing process in metallic foams[J]. Journal of Engineering Thermophysics, 2009, 30(6): 1025-1028. | |
16 | 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, (7): 739-744. |
Cheng W L, Wei W J. Energy storage and heat transfer characteristics of high porosity foam metal phase change materials[J]. Acta Energiae Solaris Sinica, 2007, (7): 739-744. | |
17 | Park K C, Chhatre S S, Strinivasan S, et al. Optimal design of permeable fiber network structures for fog harvesting[J]. Langmuir, 2013, 29(43): 13269-13277. |
18 | 赖展程, 胡海涛, 庄大伟, 等. 泡沫金属结构对排水性能的影响[J]. 化工学报, 2016, 67(7): 2756-2760. |
Lai Z C, Hu H T, Zhuang D W, et al. Influence of structure on drainage performance of metal foam[J]. CIESC Journal, 2016, 67(7): 2756-2760. | |
19 | Eral H B, De Ruiter J, De Ruiter R, et al. Drops on functional fibers: from barrels to clamshells and back[J]. Soft Matter, 2011, 7: 5138-5143. |
20 | Lu Z, Ng T W, Yu Y. Fast modeling of clam-shell drop morphologies on cylindrical surfaces[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1132-1136. |
21 | McHale G, Newton M I, Carroll B J. The shape and stability of small liquid drops on fibers[J]. Oil & Gas Science and Technology, 2001, 56: 47-54. |
22 | Davoudi M, Amrei M M, Tafreshi H V, et al. Measurement of inflection angle and correlation of shape factor of barrel-shaped droplets on horizontal fibers[J]. Separation and Purification Technology, 2018, 204: 127-132. |
23 | 李健, 程煌煌, 郑科城, 等. 基于液滴轮廓割线的纤维接触角测量方法模拟研究[J]. 科学技术与工程, 2016, 16(13): 190-195. |
Li J, Cheng H H, Zheng K C, et al. Simulation research on measuring method of fiber contact angle based on drop profile cutting line[J]. Science Technology and Engineering, 2016, 16(13): 190-195. | |
24 | McHale G, Newton M I. Global geometry and the equilibrium shapes of liquid drops on fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206: 79-86. |
25 | Amrei M M, Davoudi M, Chase G G, et al. Effects of roughness on droplet apparent contact angles on a fiber[J]. Separation and Purification Technology, 2017, 180: 107-113. |
26 | Farhan N M, Aziz H, Tafreshi H V. Simple method for measuring intrinsic contact angle of a fiber with liquids[J]. Experiments in Fluids, 2019, 60: 87. |
27 | Berim G O, Ruckenstein E. Cylindrical droplet on nanofibers: a step toward the clam-shell drop description[J]. The Journal of Physical Chemistry B, 2005, 109: 12515-12524. |
28 | Farhan N M, Vahedi T H. Universal expression for droplet-fiber detachment force[J]. Journal of Applied Physics, 2018, 124(7): 075301. |
29 | 庄大伟, 杨艺菲, 胡海涛, 等. 竖直平板间液桥形状的观测与预测模型开发[J]. 化工学报, 2016, 67(6): 2224-2229. |
Zhuang D W, Yang Y F, Hu H T, et al. Visualization and prediction model on shape of liquid bridge[J]. CIESC Journal, 2016, 67(6): 2224-2229. | |
30 | Yang Y F, Zhuang D W, Ding G L, et al. A mathematic model for predicting the volume of water bridge retaining between vertical fin surfaces[J]. International Journal of Refrigeration, 2016, 67: 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||