CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4365-4378.DOI: 10.11949/0438-1157.20200445
• Reviews and monographs • Previous Articles Next Articles
Wenying LIU1(),Xiaojie JU1,2,Rui XIE1,2,Wei WANG1,2,Zhuang LIU1,2,Liangyin CHU1,2()
Received:
2020-04-29
Revised:
2020-05-18
Online:
2020-10-05
Published:
2020-10-05
Contact:
Liangyin CHU
刘文英1(),巨晓洁1,2,谢锐1,2,汪伟1,2,刘壮1,2,褚良银1,2()
通讯作者:
褚良银
作者简介:
刘文英(1993—),女,博士研究生,基金资助:
CLC Number:
Wenying LIU, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Recent progress in preparation of functional capsule membranes based on co-extrusion minifluidic technique[J]. CIESC Journal, 2020, 71(10): 4365-4378.
刘文英, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 共挤出流体法制备功能化胶囊膜的研究进展[J]. 化工学报, 2020, 71(10): 4365-4378.
Add to citation manager EndNote|Ris|BibTeX
1 | Agu R U, Ugwoke M I, Armand M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides[J]. Respir. Res., 2001, 2(4): 198-209. |
2 | Thote A J, Gupta R B. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release[J]. Nanomedicine, 2005, 1(1): 85-90. |
3 | Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. J. Membr. Sci., 2019, 590: 117275. |
4 | Mei L, He F, Zhou R Q, et al. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5962-5970. |
5 | Hertzberg S, Kvittingen L, Anthonsen T, et al. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions[J]. Enzyme Microb. Technol., 1992, 14(1): 42-47. |
6 | Mei L, Xie R, Yang C, et al. Bio-inspired mini-eggs with pH-responsive membrane for enzyme immobilization[J]. J. Membr. Sci., 2013, 429: 313-322. |
7 | Wang J Y, Yu H R, Xie R, et al. Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization[J]. AIChE J., 2013, 59(2): 380-389. |
8 | Pan X, Mercadé-Prieto R, York D, et al. Structure and mechanical properties of consumer-friendly PMMA microcapsules[J]. Ind. Eng. Chem. Res., 2013, 52(33): 11253-11265. |
9 | Long Y, Vincent B, York D, et al. Organic-inorganic double shell composite microcapsules[J]. Chem. Commun., 2010, 46(10): 1718-1720. |
10 | Teixeira M A, Rodríguez O, Rodrigues S, et al. A case study of product engineering: performance of microencapsulated perfumes on textile applications[J]. AIChE J., 2012, 58(6): 1939-1950. |
11 | Mou C L, Wang W, Li Z L, et al. Trojan-horse-like stimuli-responsive microcapsules[J]. Adv. Sci., 2018, 5(6): 1700960. |
12 | Rao W, Zhao S, Yu J, et al. Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules[J]. Biomaterials, 2014, 35(27): 7762-7773. |
13 | Lee K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Prog. Polym. Sci., 2012, 37(1): 106-126. |
14 | Lin Y H, Liang H F, Chung C K, et al. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs[J]. Biomaterials, 2005, 26(14): 2105-2113. |
15 | Zhao S, Agarwal P, Rao W, et al. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells[J]. Integr. Biol., 2014, 6(9): 874-884. |
16 | Moghaddam M K, Mortazavi S M, Khayamian T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method[J]. J. Electrost., 2015, 73: 56-64. |
17 | Martins E, Poncelet D, Renard D. A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique[J]. React. Funct. Polym., 2017, 114: 49-57. |
18 | Liu L, Wu F, Ju X J, et al. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions[J]. J. Colloid Interface Sci., 2013, 404: 85-90. |
19 | Ren P W, Ju X J, Xie R, et al. Monodisperse alginate microcapsules with oil core generated from a microfluidic device[J]. J. Colloid Interface Sci., 2010, 343(1): 392-395. |
20 | Ben Messaoud G, Sánchez-González L, Probst L, et al. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules[J]. J. Colloid Interface Sci., 2016, 469: 120-128. |
21 | Jiang Z Y, Zhang Y F, Li J, et al. Encapsulation of beta-glucuronidase in biomimetic alginate capsules for bioconversion of baicalin to baicalein[J]. Ind. Eng. Chem. Res., 2007, 46(7): 1883-1890. |
22 | Bremond N, Santanach-Carreras E, Chu L Y, et al. Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls[J]. Soft Matter., 2010, 6: 2484-2488. |
23 | Rolland L, Santanach-Carreras E, Delmas T, et al. Physicochemical properties of aqueous core hydrogel capsules[J]. Soft Matter., 2014, 10(48): 9668-9674. |
24 | Liang W G, Yang C, Wen G Q, et al. A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals[J]. Appl. Therm. Eng., 2014, 70(1): 817-826. |
25 | Wang J Y, Jin Y, Xie R, et al. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane[J]. J. Colloid Interface Sci., 2011, 353(1): 61-68. |
26 | Huang L Y, Wu K, Zhang R, et al. Fabrication of multicore milli- and microcapsules for controlling hydrophobic drugs release using a facile approach[J]. Ind. Eng. Chem. Res., 2019, 58(36): 17017-17026. |
27 | Phawaphuthanon N, Behnam S, Koo S Y, et al. Characterization of core-shell calcium-alginate macrocapsules fabricated by electro-coextrusion[J]. Int. J. Biol. Macromol., 2014, 65: 267-274. |
28 | Ngamnikom P, Phawaphuthanon N, Kim M, et al. Fabrication of core-shell structured macrocapsules by electro-coextrusion with agar-hydrocolloid mixtures for precooked food applications: textural and release characteristics[J]. Int. J. Food Sci. Technol., 2017, 52(12): 2538-2546. |
29 | Poncelet D, Neufeld R J, Goosen M F A, et al. Formation of microgel beads by electric dispersion of polymer solutions[J]. AIChE J., 1999, 45(9): 2018-2023. |
30 | Li J, Zhang P. Formation and droplet size of EHD drippings induced by superimposing an electric pulse to background voltage[J]. J. Electrost., 2009, 67(4): 562-567. |
31 | Liao S L, He Y L, Wang D G, et al. Dynamic interfacial printing for monodisperse droplets and polymeric microparticles[J]. Adv. Mater. Technol., 2016, 1(1): 1600021. |
32 | Valet M, Pontani L L, Prevost A M, et al. Quasistatic microdroplet production in a capillary trap[J]. Phys. Rev. Appl., 2018, 9(1): 014002. |
33 | Xu P, Zheng X, Tao Y, et al. Cross-interface emulsification for generating size-tunable droplets[J]. Anal. Chem., 2016, 88(6): 3171-3177. |
34 | Liao S, Tao Y, Du W, et al. Interfacial emulsification: an emerging monodisperse droplet generation method for microreactors and bioanalysis[J]. Langmuir, 2018, 34(39): 11655-11666. |
35 | Huang F S, Niu Y, Zhu Z Q, et al. Oblique interface shearing (OIS): single-step microdroplet generation and on-demand positioning[J]. Soft Matter., 2019, 15: 4782-4786. |
36 | Zhu Z, Huang F, Yang C, et al. On-demand generation of double emulsions based on interface shearing for controlled ultrasound activation[J]. ACS Appl. Mater. Interfaces, 2019, 11(43): 40932-40943. |
37 | Hu Y, Xu P, Luo J, et al. Absolute quantification of H5-subtype avian influenza viruses using droplet digital loop-mediated isothermal amplification[J]. Anal. Chem., 2017, 89(1): 745-750. |
38 | Liao S L, Tao X L, Ju Y J, et al. Multichannel dynamic interfacial printing: an alternative multicomponent droplet generation technique for lab in a drop[J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 43545-43552. |
39 | Wang W, Jones T B, Harding D R. On-chip double emulsion droplet assembly using electrowetting-on-dielectric and dielectrophoresis[J]. Fusion Sci. Technol., 2017, 59(1): 240-249. |
40 | Kim H, Kim J. A microfluidic-based dynamic microarray system with single-layer pneumatic valves for immobilization and selective retrieval of single microbeads[J]. Microfluid. Nanofluid., 2014, 16: 623-633. |
41 | Li M, Van Zee M, Goda K, et al. Size-based sorting of hydrogel droplets using inertial microfluidics[J]. Lab Chip, 2018, 18(17): 2575-2582. |
42 | Huang L R, Cox E C, Austin R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304: 987-990. |
43 | Kuntaegowdanahalli S S, Bhagat A A, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab Chip, 2009, 9(20): 2973-2980. |
44 | Huang F S, Zhu Z Q, Niu Y, et al. Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release[J]. Lab Chip, 2020, 20(7): 1249-1258. |
45 | Villar G, Heron A J, Bayley H. Formation of droplet networks that function in aqueous environments[J]. Nat. Nanotechnol., 2011, 6(12): 803-808. |
46 | Johnston A P R, Such G K, Caruso F. Triggering release of encapsulated cargo[J]. Angew. Chem. Int. Ed., 2010, 49(15): 2664-2666. |
47 | de Hoog H P M, Nallani M, Tomczak N. Self-assembled architectures with multiple aqueous compartments[J]. Soft Matter., 2012, 8(17): 4552-4561. |
48 | Sun B J, Shum H C, Holtze C, et al. Microfluidic melt emulsification for encapsulation and release of actives[J]. ACS Appl. Mater. Interfaces, 2010, 2(12): 3411-3416. |
49 | Kisak E T, Coldren B, Evans C A, et al. The vesosome — a multicompartment drug delivery vehicle[J]. Curr. Med. Chem., 2004, 11(2): 199-219. |
50 | Peters R J R W, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes[J]. Angew. Chem. Int. Ed., 2014, 53(1): 146-150. |
51 | Huang X, Voit B. Progress on multi-compartment polymeric capsules[J]. Polym. Chem., 2013, 4(3): 435-443. |
52 | Kreft O, Prevot M, Mohwald H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions[J]. Angew. Chem. Int. Ed., 2007, 46(29): 5605-5608. |
53 | Kreft O, Skirtach A G, Sukhorukov G B, et al. Remote control of bioreactions in multicompartment capsules[J]. Adv. Mater., 2007, 19(20): 3142-3145. |
54 | Elani Y, Gee A, Law R V, et al. Engineering multi-compartment vesicle networks[J]. Chem. Sci., 2013, 4(8): 3332-3338. |
55 | Elani Y, Law R V, Ces O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways[J]. Nat. Commun., 2014, 5, 5305. |
56 | Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions[J]. Lab Chip, 2011, 11(9): 1587-1592. |
57 | Wang W, Luo T, Ju X J, et al. Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components[J]. Int. J. Nonlinear Sci. Numer. Simul., 2012, 13: 325-332. |
58 | Shum H C, Zhao Y J, Kim S H, et al. Multicompartment polymersomes from double emulsions[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1648-1651. |
59 | Windbergs M, Zhao Y J, Heyman J, et al. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives[J]. J. Am. Chem. Soc., 2013, 135(21): 7933-7937. |
60 | He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release[J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8743-8754. |
61 | 何帆. 用于物质包封及pH响应性控制释放的微胶囊的制备与性能研究[D]. 成都: 四川大学, 2018. |
He F. Preparation and performance of capsules for encapsulation and pH-responsive controlled release[D]. Chengdu: Sichuan University, 2018. | |
62 | Davarcı F, Turan D, Ozcelik B, et al. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique[J]. Food Hydrocolloids, 2017, 62: 119-127. |
63 | Lee B B, Ibrahim R, Chu S Y, et al. Alginate liquid core capsule formation using the simple extrusion dripping method[J]. J. Polym. Eng., 2015, 35(4): 311-318. |
64 | Zhao Y Y, Hu F P, Evans J J, et al. Study of sol-gel transition in calcium alginate system by population balance model[J]. Chem. Eng. Sci., 2011, 66(5): 848-858. |
65 | Blandino A, Macias M, Cantero D. Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics[J]. Biosci. Bioeng., 1999, 88(6): 686-689. |
66 | Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate[J]. Biomacromolecules, 2016, 17(6): 2160-2167. |
67 | Kim J B, Stein R, O'hare M J. Three-dimensional in vitro tissue culture models of breast cancer—a review[J]. Breast Cancer Res. Treat., 2004, 85(3): 281-291. |
68 | Lee M Y, Kumar R A, Sukumaran S M, et al. Three-dimensional cellular microarray for high-throughput toxicology assays[J]. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(1): 59-63. |
69 | Lee K H, No D Y, Kim S H, et al. Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane[J]. Lab Chip, 2011, 11(6): 1168-1173. |
70 | Chen M C, Gupta C M, Cheung K C. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening[J]. Biomed. Microdevices, 2010, 12(4): 647-654. |
71 | Kim C, Chung S, Kim Y E, et al. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid[J]. Lab Chip, 2011, 11(2): 246-252. |
72 | Alessandri K, Sarangi B R, Gurchenkov V V, et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro[J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(37): 14843-14848. |
73 | He F, Mei L, Ju X J, et al. pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules[J]. J. Membr. Sci., 2015, 474: 233-243. |
74 | Mei L, Xie R, Yang C, et al. pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction[J]. Chem. Eng. J., 2013, 232: 573-581. |
75 | Andrique L, Recher G, Alessandri K, et al. A model of guided cell self-organization for rapid and spontaneous formation of functional vessels[J]. Sci. Adv., 2019, 5: eaau6562. |
[1] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[2] | Wenhui ZHU, Xiahui WANG, Xintong YANG, Xingrun WANG, Jun HE, Guoxin HUANG, Guohua JI. Mechanisms of anti-agglomeration and anti-clogging by using zero-valent iron entrapmented in calcium alginate beads [J]. CIESC Journal, 2020, 71(5): 2344-2351. |
[3] | Weihao WANG, Xin YANG, Fei LI, Mengmeng SUN, Yaolei WANG, Tao MENG. E@Alg@s-TiO2 microsphere stabilized O/W Pickering emulsion and the enhancement of interfacial enzymatic catalysis [J]. CIESC Journal, 2019, 70(12): 4777-4786. |
[4] | Quanwei CAI, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics [J]. CIESC Journal, 2019, 70(10): 3738-3747. |
[5] | LEI Mingyue, YAN Chao, CUI Li, ZHANG Chuanjie, LIU Yun, WANG Huaifang, ZHU Ping. Gelatinization modification of calcium alginate fibers nonwoven fabrics and mechanism research [J]. CIESC Journal, 2018, 69(4): 1765-1773. |
[6] | SU Yunxiang, QUAN Xuebo, MIN Wenfeng, QIAO Laicong, LI Libo, ZHOU Jian. Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers [J]. CIESC Journal, 2017, 68(5): 1757-1766. |
[7] | AN Lianying, ZHANG Chunxia, HUANG Xianjiang. Preparation of ammonium tungstophosphate-calcium alginate composite adsorbent and adsorption thermodynamic and kinetic characteristics to rubidium [J]. CIESC Journal, 2016, 67(4): 1378-1385. |
[8] | HE Fan, XIE Rui, JU Xiaojie, WANG Wei, LIU Zhuang, CHU Liangyin. Recent progress in fabrication and functionalization of Ca-alginate capsules with ultrathin membranes [J]. CIESC Journal, 2015, 66(8): 2817-2823. |
[9] | CHU Liangyin,WANG Wei,JU Xiaojie,XIE Rui. Progress of construction of micro-scale phase interfaces and preparation of novel functional materials with microfluidics [J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2229-2234. |
[10] | CHEN Sufen, LIU Yiyang, SU Lin, QI Xiaobo, SHI Ruiting, LIU Meifang, ZHANG Zhanwen, LI Bo. Influence of double emulsions solidification rate on sphericity of poly(α-methyl styrene)capsules in microencapsulation process [J]. CIESC Journal, 2013, 64(7): 2446-2452. |
[11] | XIA Fei, JIN Heyang, ZHAO Yaping, GUO Xinqiu. Supercritical Antisolvent-based Technology for Preparation of Vitamin D3 Proliposome and Its Characteristics [J]. , 2011, 19(6): 1039-1046. |
[12] | ZHANG Zhengguo,YAN Zhipeng,FANG Xiaoming,FANG Yutang,GAO Xuenong. Research development of applications of nanotechnology in heat transfer enhancement [J]. , 2011, 30(1): 34-. |
[13] | LIU Jiefeng, REN Yiran, YAO Shanjing. Repeated-batch Cultivation of Encapsulated Monascus purpureus by Polyelectrolyte Complex for Natural Pigment Production [J]. , 2010, 18(6): 1013-1017. |
[14] | GAO Wei,XIN Meihua,LI Mingchun,LI Li,QIU Feng. Research progress of application of diacylhydrazine compounds [J]. , 2009, 28(5): 882-. |
[15] | GAO Aihuan,PI Pihui,WEN Xiufang,CHENG Jiang,YANG Zhuoru. Research progress of surface modification of aluminum pigments for corrosion protection [J]. , 2009, 28(3): 485-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||