Selective removal of sulfides in fuel oil is of great significance to the environment and human health. In this work, using density functional theory (DFT) with and without long-range dispersion correction via Grimme??s scheme (D-DFT), the adsorption behavior and adsorption selectivity of dibenzothiophene (DBT), n-hexadecane, and n-octane and toluene on the porous boron nitrides (p-BN) with/without vacancy defect have been studied. On perfect p-BN, the adsorption energy (Eads) was calculated to be 1.395, 0.600 and 0.457 eV (PBE+D) for single DBT, n-hexadecane and n-octane molecules respectively, indicating that the adsorption of DBT on p-BN is highly preferred over n-hexadecane. The strong adsorption of DBT on p-BN was attributed to the intermolecular force that derived from the interaction between the B—N polar bond and the permanent dipole of DBT molecule. With the introduction of nitrogen (VN) and boron (VB) vacancy defects, the Eads of DBT increased to 1.650 and 1.875 eV (PBE+D) and the Eads of the n-hexadecane is only 0.400 and 0.600 eV (PBE+D), respectively. The electronic structure [calculations density of states (DOS), the highest occupied molecular orbital (HOMO), total charge density together with charge density difference, and Hirshfeld charges] reveal that the chemical interactions between the defect level and S atom in sulfide enhanced the adsorption of DBT molecule on p-BN. For practical application, other sulfur-containing organic compounds including 4,6-dimethyldibenzothiophene (4,6-DMDBT), thiophene (T), benzothiophene (BT) and carbide toluene in fuel oil are also considered and p-BN still tends to selectively adsorb sulfides from carbides preferentially, suggesting that p-BN with/without vacancy defect is promising for the removal of sulfur-containing organic compounds from fuel oil. Finally, the defect formation energies were estimated to evaluate the energetic stability of defective p-BN. The growth of VN or VB strongly depends on the chemical environment. Under boron-rich conditions, the use of B2H4 as the B source is more conducive to the formation of VN than the use of B, α-B12, and BH3, etc. Contrastingly, the use of N2H4 as the N source in the nitrogen-rich environment is more beneficial to the formation of VB than the use of N2, NH3. Our results provide a useful guidance for the design and fabrication of porous BN sorbent for sulfur-containing organic matter removing from fuel oil.