CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4350-4364.DOI: 10.11949/0438-1157.20200561
• Reviews and monographs • Previous Articles Next Articles
Yongjin CUI(),Yankai LI,Kai WANG,Jian DENG,Guangsheng LUO()
Received:
2020-05-11
Revised:
2020-07-07
Online:
2020-10-05
Published:
2020-10-05
Contact:
Guangsheng LUO
通讯作者:
骆广生
作者简介:
崔永晋(1996—),男,博士研究生,基金资助:
CLC Number:
Yongjin CUI, Yankai LI, Kai WANG, Jian DENG, Guangsheng LUO. Recent advances of numbering-up technology of micro-dispersion devices[J]. CIESC Journal, 2020, 71(10): 4350-4364.
崔永晋, 李严凯, 王凯, 邓建, 骆广生. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364.
Add to citation manager EndNote|Ris|BibTeX
1 | 骆广生, 王凯, 吕阳成, 等. 微尺度下非均相反应的研究进展[J]. 化工学报, 2013, 64(1): 165-172. |
Luo G S, Wang K, Lyu Y C, et al. Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal, 2013, 64(1): 165-172. | |
2 | 陈宇超, 崔永晋, 王凯, 等. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273. |
Chen Y C, Cui Y J, Wang K, et al. Droplet and bubble dispersion in step T-junction microchannel[J]. CIESC Journal, 2020, 71(1): 265-273. | |
3 | Wang K, Zhang H M, Shen Y, et al. Thermoformed fluoropolymer tubing for in-line mixing[J]. Reaction Chemistry & Engineering, 2018, 3(5): 707-713. |
4 | Liu D, Jing Y, Wang K, et al. Reaction study of α-phase NaYF4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy[J]. Nanoscale, 2019, 11(17): 8363-8371. |
5 | Duraiswamy S, Khan S A. Droplet-based microfluidic synthesis of anisotropic metal nanocrystals[J]. Small, 2009, 5(24): 2828-2834. |
6 | Nightingale A M, Krishnadasan S H, Berhanu D, et al. A stable droplet reactor for high temperature nanocrystal synthesis[J]. Lab on a Chip, 2011, 11(7): 1221-1227. |
7 | Marre S, Adamo A, Basak S, et al. Design and packaging of microreactors for high pressure and high temperature applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11310-11320. |
8 | Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282. |
9 | 赵玉潮, 陈光文. 微化工系统的并行放大研究进展[J]. 中国科学: 化学, 2015, 45(1): 16-23. |
Zhao Y C, Chen G W. Progress in research on numbering-up of microchemical system[J]. Scientia Sinica Chimica, 2015, 45(1): 16-23. | |
10 | Holtze C. Large-scale droplet production in microfluidic devices—an industrial perspective[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114008. |
11 | Amstad E, Chemama M, Eggersdorfer M, et al. Robust scalable high throughput production of monodisperse drops[J]. Lab on a Chip, 2016, 16(21): 4163-4172. |
12 | Al-Rawashdeh M, Fluitsma L J M, Nijhuis T A, et al. Design criteria for a barrier-based gas-liquid flow distributor for parallel microchannels[J]. Chemical Engineering Journal, 2012, 181/182: 549-556. |
13 | Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces[J]. Lab on a Chip, 2012, 12(18): 3426-3435. |
14 | Huang Y C, Han T T, Xuan J, et al. Design criteria and applications of multi-channel parallel microfluidic module[J]. Journal of Micromechanics and Microengineering, 2018, 28(10): 105021. |
15 | Jeong H H, Issadore D, Lee D. Recent developments in scale-up of microfluidic emulsion generation via parallelization[J]. Korean Journal of Chemical Engineering, 2016, 33(6): 1757-1766. |
16 | Romanowsky M B, Abate A R, Rotem A, et al. High throughput production of single core double emulsions in a parallelized microfluidic device[J]. Lab on a Chip, 2012, 12(4): 802-807. |
17 | Muluneh M, Issadore D. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets[J]. Lab on a Chip, 2013, 13(24): 4750-4754. |
18 | Jeong H H, Yelleswarapu V R, Yadavali S, et al. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)[J]. Lab on a Chip, 2015, 15(23): 4387-4392. |
19 | Zhang L X, Peng D Y, Lyu W J, et al. Uniformity of gas and liquid two phases flowing through two microchannels in parallel[J]. Chemical Engineering Journal, 2015, 263: 452-460. |
20 | Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Phys. Rev. Lett., 2004, 92(5): 054503. |
21 | Abate A R, Weitz D A. Faster multiple emulsification with drop splitting[J]. Lab on a Chip, 2011, 11(11): 1911-1915. |
22 | Guo R W, Fu T T, Zhu C Y, et al. Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations[J]. Chemical Engineering Journal, 2019, 373: 1203-1211. |
23 | Su Y H, Chen G W, Kenig E Y. An experimental study on the numbering-up of microchannels for liquid mixing[J]. Lab on a Chip, 2015, 15(1): 179-187. |
24 | Hoang D A, Haringa C, Portela L M, et al. Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors[J]. Chemical Engineering Journal, 2014, 236: 545-554. |
25 | Wada Y, Schmidt M A, Jensen K F. Flow distribution and ozonolysis in gas-liquid multichannel microreactors[J]. Industrial & Engineering Chemistry Research, 2006, 45(24): 8036-8042. |
26 | Li W, Greener J, Voicu D, et al. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles[J]. Lab on a Chip, 2009, 9(18): 2715-2721. |
27 | Su Y H, Kuijpers K, Hessel V, et al. A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81. |
28 | Qiu M, Zha L, Song Y, et al. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization[J]. Reaction Chemistry & Engineering, 2019, 4(2): 351-361. |
29 | Kuijpers K P L, van Dijk M A H, Rumeur Q G, et al. A sensitivity analysis of a numbered-up photomicroreactor system[J]. Reaction Chemistry & Engineering, 2017, 2(2): 109-115. |
30 | Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions[J]. Lab on a Chip, 2014, 14(16): 3011-3020. |
31 | Rijn C J M V, Elwenspoek M C. Micro filtration membrane sieve with silicon micro machining for industrial and biomedical applications[C]// Proceedings IEEE Micro Electro Mechanical Systems 1995. Amsterdam, Netherlands,1995: 83-87. |
32 | Zheng C, Zhao B C, Wang K, et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium[J]. AIChE Journal, 2015, 61(5): 1663-1676. |
33 | Wang F J, Ding Y C, Xu J H. Continuous-flow synthesis of pigment red 146 in a microreactor system[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16338-16347. |
34 | Osuchowska P N, Ostrowski R, Sarzynski A, et al. Microstructured polyethylene terephthalate (PET) for microsieving of cancer cells[J]. Results Phys., 2019, 15: 102612. |
35 | Wang K, Lu Y C, Luo G S. Strategy for scaling-up of a microsieve dispersion reactor[J]. Chemical Engineering & Technology, 2014, 37(12): 2116-2122. |
36 | Lim L S, Hu M, Huang M C, et al. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells[J]. Lab on a Chip, 2012, 12(21): 4388-4396. |
37 | Hu Y P, Wang K, Han C L, et al. Liquid-liquid microdispersion method for the synthesis of TS-1 free of extra-framework Ti species[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12010-12017. |
38 | Dyrda K M, Grinschek F, Rabsch G, et al. Development of a microsieve based micro contactor for gas/liquid phase separation[J]. Separation and Purification Technology, 2019, 220: 238-249. |
39 | Wu X Y, Bai Z Y, Wang L, et al. Magnetic cell centrifuge platform performance study with different microsieve pore geometries[J]. Sensors (Basel), 2019, 20(1): 48. |
40 | Zweitzig D R, Tibbe A G, Nguyen A T, et al. Feasibility of a simple microsieve-based immunoassay platform[J]. J. Immunol. Methods, 2016, 437: 21-27. |
41 | Wang J C, Zhang F, Wang Y J, et al. A size-controllable preparation method for indium tin oxide particles using a membrane dispersion micromixer[J]. Chemical Engineering Journal, 2016, 293: 1-8. |
42 | Hornig N, Fritsching U. Liquid dispersion in premix emulsification within porous membrane structures[J]. Journal of Membrane Science, 2016, 514: 574-585. |
43 | Klein T Y, Treccani L, Rezwan K. Ceramic microbeads as adsorbents for purification technologies with high specific surface area, adjustable pore size, and morphology obtained by ionotropic gelation[J]. Journal of the American Ceramic Society, 2012, 95(3): 907-914. |
44 | Tan J, Xu J H, Wang K, et al. Rapid measurement of gas solubility in liquids using a membrane dispersion microcontactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10040-10045. |
45 | Wang Y J, Zhang C L, Bi S W, et al. Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor[J]. Powder Technol., 2010, 202(1/2/3): 130-136. |
46 | Wang Y J, Xu D Q, Sun H T, et al. Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaAlO2 solution[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3889-3894. |
47 | Du L, Tan J, Wang K, et al. Controllable preparation of SiO2 nanoparticles using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8536-8541. |
48 | Lu Y C, Zhang T B, Liu Y, et al. Preparation of FePO4 nano-particles by coupling fast precipitation in membrane dispersion microcontactor and hydrothermal treatment[J]. Chemical Engineering Journal, 2012, 210: 18-25. |
49 | Lu Y C, Liu Y, Zhou C, et al. Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11015-11020. |
50 | Li J H, Chen J, Wang Y J, et al. Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor[J]. Bioresour. Technol., 2014, 169: 416-420. |
51 | Yao H B, Wang Y J, Luo G S. A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4993-4999. |
52 | Han C L, Hu Y P, Wang K, et al. Preparation and in-situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system[J]. Powder Technol., 2019, 356: 414-422. |
53 | Xia S T, Ding X F, Wang Y J, et al. Large-scale synthesis of dihydrostreptomycin via hydrogenation of streptomycin in a membrane dispersion microreactor[J]. Chemical Engineering Journal, 2018, 334: 2250-2254. |
54 | Nazir A, Schroën K, Boom R. Premix emulsification: a review[J]. Journal of Membrane Science, 2010, 362(1): 1-11. |
55 | Joscelyne S M, Trägårdh G. Membrane emulsification — a literature review[J]. Journal of Membrane Science, 2000, 169(1): 107-117. |
56 | Piacentini E, Drioli E, Giorno L. Membrane emulsification technology: twenty-five years of inventions and research through patent survey[J]. Journal of Membrane Science, 2014, 468: 410-422. |
57 | Guckenberger D J, de Groot T E, Wan A M, et al. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices[J]. Lab on a Chip, 2015, 15(11): 2364-2378. |
58 | Aurich J C, Reichenbach I G, Schüler G M. Manufacture and application of ultra-small micro end mills[J]. CIRP Annals, 2012, 61(1): 83-86. |
59 | Becker H, Heim U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures[J]. Sensors and Actuators A: Physical, 2000, 83(1): 130-135. |
60 | Abgrall P, Low L N, Nguyen N T. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding[J]. Lab on a Chip, 2007, 7(4): 520-522. |
61 | Waldbaur A, Rapp H, Länge K, et al. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes[J]. Analytical Methods, 2011, 3(12): 2681-2716. |
62 | Au A K, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices[J]. Lab on a Chip, 2014, 14(7): 1294-1301. |
63 | Attia U M, Marson S, Alcock J R. Micro-injection moulding of polymer microfluidic devices[J]. Microfluidics and Nanofluidics, 2009, 7(1): 1. |
64 | Tanzi S, Matteucci M, Christiansen T L, et al. Ion channel recordings on an injection-molded polymer chip[J]. Lab on a Chip, 2013, 13(24): 4784-4793. |
65 | Guckenberger D J, Berthier E, Beebe D J. High-density self-contained microfluidic KOALA kits for use by everyone[J]. Journal of Laboratory Automation, 2014, 20(2): 146-153. |
66 | Berthier E, Guckenberger D J, Cavnar P, et al. Kit-On-A-Lid-Assays for accessible self-contained cell assays[J]. Lab on a Chip, 2013, 13(3): 424-431. |
67 | Casavant B P, Guckenberger D J, Berry S M, et al. The VerIFAST: an integrated method for cell isolation and extracellular/intracellular staining[J]. Lab on a Chip, 2013, 13(3): 391-396. |
68 | Strotman L, O'connell R, Casavant B P, et al. Selective nucleic acid removal via exclusion (SNARE): capturing mRNA and DNA from a single sample[J]. Analytical Chemistry, 2013, 85(20): 9764-9770. |
69 | Bischel L L, Mader B R, Green J M, et al. Zebrafish entrapment by restriction array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging[J]. Lab on a Chip, 2013, 13(9): 1732-1736. |
70 | Bang Y B, Lee K M, Oh S. 5-axis micro milling machine for machining micro parts[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(9): 888-894. |
71 | Femmer T, Jans A, Eswein R, et al. High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping[J]. ACS Appl. Mater. Interfaces, 2015, 7(23): 12635-12638. |
72 | Hanada Y, Sugioka K, Kawano H, et al. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass[J]. Biomedical Microdevices, 2008, 10(3): 403-410. |
73 | Hanada Y, Sugioka K, Shihira-Ishikawa I, et al. 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria[J]. Lab on a Chip, 2011, 11(12): 2109-2115. |
74 | Zhou Y F. The recent development and applications of fluidic channels by 3D printing[J]. J. Biomed. Sci., 2017, 24(1): 80. |
75 | Zhang J M, Ji Q L, Duan H L. Three-dimensional printed devices in droplet microfluidics[J]. Micromachines (Basel), 2019, 10(11): 754. |
76 | Au A K, Huynh W, Horowitz L F, et al. 3D-printed microfluidics[J]. Angewandte Chemie International Edition, 2016, 55(12): 3862-3881. |
77 | Chan H N, Tan M J A, Wu H. Point-of-care testing: applications of 3D printing[J]. Lab on a Chip, 2017, 17(16): 2713-2739. |
78 | Gross B, Lockwood S Y, Spence D M. Recent advances in analytical chemistry by 3D printing[J]. Analytical Chemistry, 2017, 89(1): 57-70. |
79 | Chen C P, Mehl B T, Munshi A S, et al. 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review[J]. Analytical Methods, 2016, 8(31): 6005-6012. |
80 | Waheed S, Cabot J M, Macdonald N P, et al. 3D printed microfluidic devices: enablers and barriers[J]. Lab on a Chip, 2016, 16(11): 1993-2013. |
81 | Bhattacharjee N, Urrios A, Kang S, et al. The upcoming 3D-printing revolution in microfluidics[J]. Lab on a Chip, 2016, 16(10): 1720-1742. |
82 | Zhao H M, Yang F F, Fu J Z, et al. Printing@Clinic: from medical models to organ implants[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3083-3097. |
83 | Bonyár A, Sántha H, Varga M, et al. Characterization of rapid PDMS casting technique utilizing molding forms fabricated by 3D rapid prototyping technology (RPT)[J]. International Journal of Material Forming, 2014, 7(2): 189-196. |
84 | Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24): 6121-6130. |
85 | Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 2014, 1(4): 041303. |
86 | Lee J M, Zhang M, Yeong W Y. Characterization and evaluation of 3D printed microfluidic chip for cell processing[J]. Microfluidics and Nanofluidics, 2016, 20(1): 5. |
87 | Li X H, Abe T, Esashi M. Deep reactive ion etching of Pyrex glass using SF6 plasma[J]. Sensors and Actuators A: Physical, 2001, 87(3): 139-145. |
88 | Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J]. Lab on a Chip, 2008, 8(2): 287-293. |
89 | Baram A, Naftali M. Dry etching of deep cavities in Pyrex for MEMS applications using standard lithography[J]. Journal of Micromechanics and Microengineering, 2006, 16(11): 2287-2291. |
90 | Kolari K, Saarela V, Franssila S. Deep plasma etching of glass for fluidic devices with different mask materials[J]. Journal of Micromechanics and Microengineering, 2008, 18(6): 064010. |
91 | Xia Y N, Whitesides G M. Soft lithography[J]. Angewandte Chemie International Edition, 1998, 37(5): 550-575. |
92 | Mcdonald J C, Whitesides G M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices[J]. Accounts of Chemical Research, 2002, 35(7): 491-499. |
93 | Sia S K, Whitesides G M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies[J]. Electrophoresis, 2003, 24(21): 3563-3576. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[4] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[5] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[6] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[7] | Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel [J]. CIESC Journal, 2023, 74(1): 416-427. |
[8] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
[9] | Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Liquid-liquid two-phase flow and mesoscale effect in parallel microchannels [J]. CIESC Journal, 2022, 73(6): 2563-2572. |
[10] | Yaran YIN, Xingxing ZHU, Xianming ZHANG, Chunying ZHU, Taotao FU, Youguang MA. Mass transfer characteristics of CO2 absorption in alkanolamine/ionic liquid hybrid aqueous solutions in a microchannel [J]. CIESC Journal, 2022, 73(5): 1930-1939. |
[11] | Xiaoxi WANG, Xiaoyan LI, Baowei WANG. Decomposition of carbon dioxide via dielectric barrier discharge microplasma [J]. CIESC Journal, 2022, 73(3): 1343-1350. |
[12] | Jingzhi ZHANG, Yuting ZHAO, Yingdi WANG, Jianhui QI, Li LEI. Experimental study on liquid-liquid two-phase flow pattern and flow characteristics in sinusoidal microchannels [J]. CIESC Journal, 2022, 73(3): 1111-1118. |
[13] | Xiao YANG, Rui DING, Mohan LI, Zhengchang SONG. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel [J]. CIESC Journal, 2022, 73(12): 5427-5437. |
[14] | Zhiwei ZHANG, Chunying ZHU, Youguang MA, Taotao FU. Progress of self-organization behavior of bubbles and droplets in microchannels [J]. CIESC Journal, 2022, 73(1): 144-152. |
[15] | Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device [J]. CIESC Journal, 2022, 73(1): 434-440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||