CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3738-3747.DOI: 10.11949/0438-1157.20190573
• Reviews and monographs • Previous Articles Next Articles
Quanwei CAI1(),Xiaojie JU1,2,Rui XIE1,2,Wei WANG1,2,Zhuang LIU1,2,Liangyin CHU1,2()
Received:
2019-05-27
Revised:
2019-06-20
Online:
2019-10-05
Published:
2019-10-05
Contact:
Liangyin CHU
蔡泉威1(),巨晓洁1,2,谢锐1,2,汪伟1,2,刘壮1,2,褚良银1,2()
通讯作者:
褚良银
作者简介:
蔡泉威(1991—),男,博士研究生,基金资助:
CLC Number:
Quanwei CAI, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics[J]. CIESC Journal, 2019, 70(10): 3738-3747.
蔡泉威, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic illustration of microfluidic device for fabricating pod-like microfibers (a), manipulation of pod-like microfibers for preparing rod-like particles with different structures (b), optical images (upper, scale bar is 1 mm) and SEM images (bottom, scale bar is 200 μm) of rod-like microparticles fabricated from deformed rod-like droplets (c)[42]
Fig.3 Schematic illustration of microfluidic device for preparation of monodisperse bullet-shaped microparticles, and analysis of stress on droplets in microchannel in different situations. Blue arrows represent positive pressure from oil fluid and red arrows represent fluid shear stress on droplets (a).
Fig.4 Schematic illustration of surfactant-assisted assembly of multicompartment liposome vesicles microparticles (a). Schematic diagram (b) and snapshots (c) of fabrication of double emulsions with two distinct drops. Confocal images of vesicles microparticles with two different compartments (d). Confocal images of vesicle microparticles with multi structures (e) [48]
Fig.6 Schematic illustration of microfluidic fabrication of magnetic hybrid microfiber and biosilicification process to fabricate helical microparticles with hollow structures (a). Optical morphology of magnetic helical Ca-Alg microparticles (b). SEM image of a magnetic hybrid microparticle with hollow helical shape containing closed compartmental structure (c) and open tubular structure (d). EDX analysis showing surface distribution of Fe element of hybrid shell(e). SEM image of a broken magnetic hybrid microparticles (f) with magnified cross-sectional image showing hollow helical structure (g)[73]
1 | Nisisako T , Torii T . Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles[J]. Adv. Mater., 2007, 19(11): 1489-1493. |
2 | Barua S , Yoo J W , Kolhar P , et al . Particle shape enhances specificity of antibody-displaying nanoparticles[J]. Proc.Natl. Acad. Sci. U. S. A., 2013, 110(9): 3270-3275. |
3 | Gu L , Park J H , Duong K H , et al . Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads[J]. Small, 2010, 6(22): 2546-2552. |
4 | He F , Zhang M J , Wang W , et al . Designable polymeric microparticles from droplet microfluidics for controlled drug release[J]. Adv. Mater. Technol., 2019, 4(6): 1800687. |
5 | Chen J , Clay N , Kong H . Non-spherical particles for targeted drug delivery[J]. Chem. Eng. Sci., 2015, 125: 20-24. |
6 | Best J P , Yan Y , Caruso F . The role of particle geometry and mechanics in the biological domain[J]. Adv. Healthc. Mater., 2012, 1(1): 35-47. |
7 | Murray M J , Snowden M J . The preparation, characterisation and applications of colloidal microgels[J]. Adv. Colloid Interfac., 1995, 54: 73-91. |
8 | Chung H J , Park T G . Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering[J]. Adv. Drug. Deliv. Rev., 2007, 59(4/5): 249-262. |
9 | Eng G , Lee B W , Parsa H , et al . Assembly of complex cell microenvironments using geometrically docked hydrogel shapes[J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12): 4551-4556. |
10 | Glotzer S C , Solomon M J . Anisotropy of building blocks and their assembly into complex structures[J]. Nat. Mater., 2007, 6(8): 557-562. |
11 | Lu Y , Yin Y , Xia Y . Three-dimensional photonic crystals with non-spherical colloids as building blocks[J]. Adv. Mater., 2001, 13(6): 415-420. |
12 | Rolland J P , Maynor B W , Euliss L E , et al . Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. J.Am. Chem. Soc., 2005, 127(28): 10096-10100. |
13 | Pal R K , Kurland N E , Jiang C , et al . Fabrication of precise shape-defined particles of silk proteins using photolithography[J]. Euro. Polym. J., 2016, 85: 421-430. |
14 | Tavacoli J W , Bauër P , Fermigier M , et al . The fabrication and directed self-assembly of micron-sized superparamagnetic non-spherical particles[J]. Soft Matter, 2013, 9(38): 9103-9110. |
15 | Yin Y , Xia Y . Self-assembly of monodispersed spherical colloids into complex aggregates with well‐defined sizes, shapes, and structures[J]. Adv. Mater., 2001, 13(4): 267-271. |
16 | Tamaki K , Matsushita S , Shimomura M . Fabrication of polymeric particles composed of two-dimensionally self-assembled nanoparticles by use of a microporous film as a template[J]. Colloid Surface A, 2008, 313: 630-635. |
17 | Manoharan V N , Elsesser M T , Pine D J . Dense packing and symmetry in small clusters of microspheres[J]. Science, 2003, 301(5632): 483-487. |
18 | Lele P P , Furst E M . Assemble-and-stretch method for creating two- and three-dimensional structures of anisotropic particles[J]. Langmuir, 2009, 25(16): 8875-8878. |
19 | Champion J A , Katare Y K , Mitragotri S . Making polymeric micro-and nanoparticles of complex shapes[J]. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(29): 11901-11904. |
20 | Cheng Y , Zhu C , Xie Z , et al . Anisotropic colloidal crystal particles from microfluidics[J]. J. Colloid Interf. Sci., 2014, 421: 64-70. |
21 | Zhang C , Yu X , You S , et al . Ultraviolet-assisted microfluidic generation of ferroelectric composite particles[J]. Biomicrofluidics, 2016, 10(2): 024106. |
22 | Zhao Y , Xie Z , Gu H , et al . Multifunctional photonic crystal barcodes from microfluidics[J]. NPG Asia Mater., 2012, 4(9): e25. |
23 | Dou Y , Wang B , Jin M , et al . A review on self-assembly in microfluidic devices[J]. J. Micromech. Microeng., 2017, 27(11): 113002. |
24 | Shang L , Cheng Y , Zhao Y . Emerging droplet microfluidics[J]. Chem. Rev., 2017, 117(12): 7964-8040. |
25 | Utada A S , Chu L Y , Fernandez N A , et al . Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bull., 2011, 32(9): 702-708. |
26 | Dendukuri D , Pregibon D C , Collins J , et al . Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nat. Mater., 2006, 5(5): 365-369. |
27 | Kim H U , Choi D G , Roh Y H , et al . Microfluidic synthesis of pH-sensitive multicompartmental microparticles for multimodulated drug release[J]. Small, 2016, 12(25): 3463-3470. |
28 | Hwang D K , Oakey J , Toner M , et al . Stop-flow lithography for the production of shape-evolving degradable microgel particles[J]. J.Am. Chem. Soc., 2009, 131(12): 4499-4504. |
29 | Suh S K , Yuet K , Hwang D K , et al . Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography[J]. J.Am. Chem. Soc., 2012, 134(17): 7337-7343. |
30 | Dendukuri D , Gu S S , Pregibon D C , et al . Stop-flow lithography in a microfluidic device[J]. Lab Chip, 2007, 7(7): 818-828. |
31 | Gratton S E , Ropp P A , Pohlhaus P D , et al . The effect of particle design on cellular internalization pathways[J]. Proc.Natl. Acad. Sci. U. S. A., 2008, 105(33): 11613-11618. |
32 | Panda P , Yuet K P , Hatton T A , et al . Tuning curvature in flow lithography: a new class of concave/convex particles[J]. Langmuir, 2009, 25(10): 5986-5992. |
33 | Dendukuri D , Panda P , Haghgooie R , et al . Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device[J]. Macromolecules, 2008, 41(22): 8547-8556. |
34 | Jang J H , Dendukuri D , Hatton T A , et al . A route to three-dimensional structures in a microfluidic device: stop‐flow interference lithography[J]. Angew. Chem. Int. Ed., 2007, 46(47): 9027-9031. |
35 | Fan J , Kim S H , Chen Z , et al . Creation of faceted polyhedral microgels from compressed emulsions[J]. Small, 2017, 13(31): 1701256. |
36 | Xu S , Nie Z , Seo M , et al . Generation of monodisperse particles by using microfluidics: control over size, shape, and composition[J]. Angew. Chem. Int. Ed., 2005, 44(5): 724-728. |
37 | Seo M , Nie Z , Xu S , et al . Continuous microfluidic reactors for polymer particles[J]. Langmuir, 2005, 21(25): 11614-11622. |
38 | Guerzoni L P B , Rose J C , Gehlen D B , et al . Cell encapsulation in soft, anisometric poly(ethylene) glycol microgels using a novel radical‐free microfluidic system[J]. Small, 2019, 15(20): 1900692. |
39 | Sim J Y , Lee G H , Kim S H . Microfluidic design of magnetoresponsive photonic microcylinders with multicompartments[J]. Small, 2015, 11(37): 4938-4945. |
40 | Shepherd R F , Conrad J C , Rhodes S K , et al . Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules[J]. Langmuir, 2006, 22(21): 8618-8622. |
41 | Dendukuri D , Tsoi K , Hatton T A , et al . Controlled synthesis of nonspherical microparticles using microfluidics[J]. Langmuir, 2005, 21(6): 2113-2116. |
42 | Wang W , He X H , Zhang M J , et al . Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices[J]. Macromol. Rapid Commun., 2017, 38(23): 1700429. |
43 | Hakimi N , Tsai S S , Cheng C H , et al . One-step two-dimensional microfluidics-based synthesis of three-dimensional particles[J]. Adv. Mater., 2014, 26(9): 1393-1398. |
44 | Choi K , Salehizadeh M , Da Silva R B , et al . 3D shape evolution of microparticles and 3D enabled applications using non-uniform UV flow lithography(NUFL)[J]. Soft Matter, 2017, 13(40): 7255-7263. |
45 | Cai Q W , Ju X J , Chen C , et al . Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures[J]. Chem. Eng. J., 2019, 370: 925-937. |
46 | Min N G , Choi T M , Kim S H . Bicolored Janus microparticles created by phase separation in emulsion drops[J]. Macromol. Chem. Phys., 2017, 218(2): 1600265. |
47 | Kang Z , Kong T , Lei L , et al . Engineering particle morphology with microfluidic droplets[J]. J. Micromech. Microeng., 2016, 26(7): 075011. |
48 | Deng N N , Yelleswarapu M , Huck W T . Monodisperse uni- and multicompartment liposomes[J]. J.Am. Chem. Soc., 2016, 138(24): 7584-7591. |
49 | Min N G , Ku M , Yang J , et al . Microfluidic production of uniform microcarriers with multicompartments through phase separation in emulsion drops[J]. Chem. Mater., 2016, 28(5): 1430-1438. |
50 | Shum H C , Zhao Y , Kim S H , et al . Multicompartment polymersomes from double emulsions[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1648-1651. |
51 | Yin S N , Yang S , Wang C F , et al . Magnetic-directed assembly from Janus building blocks to multiplex molecular-analogue photonic crystal structures[J]. J.Am. Chem. Soc., 2016, 138(2): 566-573. |
52 | Prasad N , Perumal J , Choi C H , et al . Generation of monodisperse inorganic-organic Janus microspheres in a microfluidic device[J]. Adv. Funct. Mater., 2009, 19(10): 1656-1662. |
53 | Chen C H , Shah R K , Abate A R , et al . Janus particles templated from double emulsion droplets generated using microfluidics[J]. Langmuir, 2009, 25(8): 4320-4323. |
54 | Wang W , Zhang M J , Xie R , et al . Hole-shell microparticles from controllably evolved double emulsions[J]. Angew. Chem. Int. Ed., 2013, 52(31): 8084-8087. |
55 | Zhang M J , Wang W , Yang X L , et al . Uniform microparticles with controllable highly interconnected hierarchical porous structures[J]. ACS Appl. Mater. Inter., 2015, 7(25): 13758-13767. |
56 | Liu Q , Zhao M , Mytnyk S , et al . Self-orienting hydrogel micro-buckets as novel cell carriers[J]. Angew. Chem. Int. Ed., 2019, 58(2): 547-551. |
57 | Wang J , Shang L , Cheng Y , et al . Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption[J]. Small, 2015, 11(32): 3890-3895. |
58 | Zhao X , Liu Y , Yu Y , et al . Hierarchically porous composite microparticles from microfluidics for controllable drug delivery[J]. Nanoscale, 2018, 10(26): 12595-12604. |
59 | Su Y Y , Zhang M J , Wang W , et al . Bubble-propelled hierarchical porous micromotors from evolved double emulsions[J]. Ind. Eng. Chem. Res., 2019, 58(4): 1590-1600. |
60 | Lee D , Weitz D A . Nonspherical colloidosomes with multiple compartments from double emulsions[J]. Small, 2009, 5(17): 1932-1935. |
61 | Zou M , Wang J , Yu Y , et al . Composite multifunctional micromotors from droplet microfluidics[J]. ACS Appl. Mater. Inter., 2018, 10(40): 34618-34624. |
62 | Zhao X , Liu Y , Yu Y , et al . Hierarchically porous composite microparticles from microfluidics for controllable drug delivery[J]. Nanoscale, 2018, 10(26): 12595-12604. |
63 | Wang J , Shang L , Cheng Y , et al . Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption[J]. Small, 2015, 11(32): 3890-3895. |
64 | Wang J , Cheng Y , Yu Y , et al . Microfluidic generation of porous microcarriers for three-dimensional cell culture[J]. ACS Appl. Mater. Inter., 2015, 7(49): 27035-27039. |
65 | Sun L , Wang J , Yu Y , et al . Graphene oxide hydrogel particles from microfluidics for oil decontamination[J]. J. Colloid Interf. Sci., 2018, 528: 372-378. |
66 | Nisisako T , Hatsuzawa T . A microfluidic cross-flowing emulsion generator for producing biphasic droplets and anisotropically shaped polymer particles[J]. Microfluid. Nanofluid., 2010, 9(2/3): 427-437. |
67 | Peyer K E , Tottori S , Qiu F , et al . Magnetic helical micromachines[J]. Chem. Eur. J., 2013, 19(1): 28-38. |
68 | Wang X , Chen X Z , Alcântara C C J , et al . MOFBOTS: metal-organic-framework-based biomedical microrobots[J]. Adv. Mater., 2019: 1901592. |
69 | Tottori S , Zhang L , Qiu F , et al . Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Adv. Mater., 2012, 24(6): 811-816. |
70 | Yu Y , Fu F , Shang L , et al . Bioinspired helical microfibers from microfluidics[J]. Adv. Mater., 2017, 29(18): 1605765. |
71 | Ribe N M , Habibi M , Bonn D . Liquid rope coiling[J]. Annu. Rev. Fluid Mech., 2012, 44(1): 249-266. |
72 | Yu Y , Shang L , Gao W , et al . Microfluidic lithography of bioinspired helical micromotors[J]. Angew. Chem. Int. Ed., 2017, 56(40): 12127-12131. |
73 | Tang M J , Wang W , Li Z L , et al . Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Ind. Eng. Chem. Res., 2018, 57(29): 9430-9438. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[6] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[7] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[8] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[9] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
[10] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[11] | Dawei PAN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Progress on regulation of meso-scale structures for microfluidic emulsion-template synthesis of functional microparticles [J]. CIESC Journal, 2022, 73(6): 2306-2317. |
[12] | Xiao YANG, Rui DING, Mohan LI, Zhengchang SONG. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel [J]. CIESC Journal, 2022, 73(12): 5427-5437. |
[13] | Ran LIU, Jie LI, Yubing WANG, Hongbo ZHAN, Dalin ZHANG. Experimental study on condensation heat transfer of R134a in mini channel with micro diamond fins [J]. CIESC Journal, 2022, 73(11): 4938-4947. |
[14] | Zhimin LIN, Chongzhao WANG, Guozhi QIANG, Shushan LIU, Liangbi WANG. Analysis of flow and heat transfer characteristics of lubricating oil in circular tube with coaxial crossed vortex generators [J]. CIESC Journal, 2022, 73(11): 4957-4973. |
[15] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||