CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 55-61.DOI: 10.11949/0438-1157.20200484
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Kai CHEN(),Junsheng HOU,Yiming CHEN,Shuangfeng WANG(
)
Received:
2020-05-06
Revised:
2020-05-08
Online:
2020-11-06
Published:
2020-11-06
Contact:
Shuangfeng WANG
通讯作者:
汪双凤
作者简介:
陈凯(1986—),男,博士,副研究员,基金资助:
CLC Number:
Kai CHEN, Junsheng HOU, Yiming CHEN, Shuangfeng WANG. Shape optimization of plenums in parallel air-cooled battery thermal management system[J]. CIESC Journal, 2020, 71(S2): 55-61.
陈凯, 侯竣升, 陈逸明, 汪双凤. 并行流道风冷式电池热管理系统的导流板形状优化[J]. 化工学报, 2020, 71(S2): 55-61.
参数 | 取值 |
---|---|
进口尺寸,Lin | 20 mm |
出口尺寸,Lout | 20 mm |
冷却通道间距,Dcc | 3 mm |
电池个数,Nb | 12×2 |
电池尺寸 | 16 mm × 151 mm × 65 mm |
进口空气流量,Q0 | 0.015 m3/s |
进口空气温度,T0 | 298.15 K |
空气热导率,λa | 0.0267 W/(m?K) |
空气密度,ρa | 1.165 kg/m3 |
空气比热容,cp,a | 1005 J/(kg?K) |
空气动力黏性系数,μ | 1.86×10-5 kg/(m?s) |
电池热导率,λb,x, λb,y, λb,z | 1.05, 21.1, 21.1 W/(m?K) |
电池密度,ρb | 1542.9 kg/m3 |
电池比热容,cp,b | 1337 J/(kg?K) |
Table 1 Calculation parameters
参数 | 取值 |
---|---|
进口尺寸,Lin | 20 mm |
出口尺寸,Lout | 20 mm |
冷却通道间距,Dcc | 3 mm |
电池个数,Nb | 12×2 |
电池尺寸 | 16 mm × 151 mm × 65 mm |
进口空气流量,Q0 | 0.015 m3/s |
进口空气温度,T0 | 298.15 K |
空气热导率,λa | 0.0267 W/(m?K) |
空气密度,ρa | 1.165 kg/m3 |
空气比热容,cp,a | 1005 J/(kg?K) |
空气动力黏性系数,μ | 1.86×10-5 kg/(m?s) |
电池热导率,λb,x, λb,y, λb,z | 1.05, 21.1, 21.1 W/(m?K) |
电池密度,ρb | 1542.9 kg/m3 |
电池比热容,cp,b | 1337 J/(kg?K) |
n | R | 拟合得到的多项式 |
---|---|---|
2 | 0.988 | y=-0.0255x2+0.0945x-0.0965 |
3 | 0.991 | y=-1.669x3+0.5528x2+0.0427x-0.0956 |
4 | 0.991 | y=13.0582x4-7.7018x3+1.4317x2-0.0007x-0.0953 |
5 | 0.991 | y=-185.952x5+120.4454x4-29.4875x3+3.2501x2- 0.0533x-0.095 |
Table 2 Optimized curves of inlet plenum
n | R | 拟合得到的多项式 |
---|---|---|
2 | 0.988 | y=-0.0255x2+0.0945x-0.0965 |
3 | 0.991 | y=-1.669x3+0.5528x2+0.0427x-0.0956 |
4 | 0.991 | y=13.0582x4-7.7018x3+1.4317x2-0.0007x-0.0953 |
5 | 0.991 | y=-185.952x5+120.4454x4-29.4875x3+3.2501x2- 0.0533x-0.095 |
n | R | Tmax/K | ΔTmax/K | Δp/Pa |
---|---|---|---|---|
2 | 0.988 | 331.4 | 2.1 | 57.9 |
3 | 0.991 | 331.4 | 1.0 | 57.8 |
4 | 0.991 | 331.3 | 1.1 | 57.7 |
5 | 0.991 | 331.2 | 1.1 | 57.6 |
Table 3 Shape optimization results of inlet plenum
n | R | Tmax/K | ΔTmax/K | Δp/Pa |
---|---|---|---|---|
2 | 0.988 | 331.4 | 2.1 | 57.9 |
3 | 0.991 | 331.4 | 1.0 | 57.8 |
4 | 0.991 | 331.3 | 1.1 | 57.7 |
5 | 0.991 | 331.2 | 1.1 | 57.6 |
系统 | Q0=0.010 m3/s | Q0=0.015 m3/s | Q0=0.020 m3/s | ||||||
---|---|---|---|---|---|---|---|---|---|
Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | |
Z | 338.8 | 8.1 | 23.0 | 336.4 | 9.7 | 47.3 | 334.6 | 10.8 | 80.8 |
Zopt0 | 335.6 | 2.3 | 28.1 | 331.9 | 2.7 | 58.1 | 329.2 | 3.2 | 98.8 |
Zopt | 335.1 | 1.2 | 28.2 | 331.4 | 1.1 | 57.8 | 328.6 | 1.2 | 98.0 |
Table4 Performance of the air-cooled BTMSs under different inlet flow rates
系统 | Q0=0.010 m3/s | Q0=0.015 m3/s | Q0=0.020 m3/s | ||||||
---|---|---|---|---|---|---|---|---|---|
Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | |
Z | 338.8 | 8.1 | 23.0 | 336.4 | 9.7 | 47.3 | 334.6 | 10.8 | 80.8 |
Zopt0 | 335.6 | 2.3 | 28.1 | 331.9 | 2.7 | 58.1 | 329.2 | 3.2 | 98.8 |
Zopt | 335.1 | 1.2 | 28.2 | 331.4 | 1.1 | 57.8 | 328.6 | 1.2 | 98.0 |
10 | Wang J Q, Gan Y H, Liang J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells [J]. Appl. Therm. Eng., 2019, 151: 475-485. |
11 | Zhao J T, Lü P Z, Rao Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack [J]. Exp. Therm. Fluid Sci., 2017, 82: 182-188. |
12 | Greco A, Cao D P, Jiang X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes [J]. J. Power Sources, 2014, 257: 344-355. |
13 | Zhou H B, Zhou F, Xu L P, et al. Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe [J]. Int. J. Heat Mass Transf., 2019, 131: 984-998. |
14 | Pesaran A A. Battery thermal models for hybrid vehicle simulations [J]. J. Power Sources, 2002, 110(2): 377-382. |
15 | Yu K H, Yang X, Cheng Y Z, al et, Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack [J]. J. Power Sources, 2014, 270: 193-200. |
16 | Shahid S, Agelin-Chaab M. Experimental and numerical studies on air cooling and temperature uniformity in a battery pack [J]. Int. J. Energ. Res., 2018, 42(6): 2246-2262. |
17 | Wang S X, Li K X, Tian Y, et al. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow [J]. Appl. Therm. Eng., 2019, 152: 445-454. |
18 | Chen K, Li Z Y, Chen Y M, et al. Design of parallel air-cooled battery thermal management system through numerical study [J]. Energies, 2017, 10(10): 22. |
19 | Chen K, Wu W X, Yuan F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern [J]. Energy, 2019, 167: 781-790. |
20 | Zhang J H, Kang H F, Wu K L, et al. The impact of enclosure and boundary conditions with a wedge-shaped path and air cooling for battery thermal management in electric vehicles [J]. Int. J. Energ. Res., 2018, 42(13): 4054-4069. |
1 | Li W, Xiao M, Peng X B, et al. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs [J]. Appl. Therm. Eng., 2018, 147: 90-100. |
2 | Lu Z, Yu X L, Wei L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement [J]. Appl. Therm. Eng., 2018, 136: 28-40. |
3 | Peng X B, Ma C, Garg A, et al. Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells [J]. Appl. Therm. Eng., 2019, 153: 596-603. |
21 | Fan L W, Khodadadi J M, Pesaran A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles [J]. J. Power Sources, 2013, 238: 301-312. |
22 | Hong S H, Zhang X Q, Chen K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent [J]. Int. J. Heat Mass Transf., 2018, 116: 1204-1212. |
4 | Deng T, Ran Y, Zhang G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries [J]. Appl. Therm. Eng., 2019, 150: 1186-1196. |
5 | Panchal S, Khasow R, Dincer I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery [J]. Appl. Therm. Eng., 2017, 122: 80-90. |
6 | Wang C, Zhang G Q, Meng L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system [J]. Int. J. Energ. Res., 2017, 41(15): 2468-2479. |
7 | Mehrabi-Kermani M, Houshfar E, Ashjaee M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection [J]. Int. J. Therm. Sci., 2019, 141: 47-61. |
8 | Huang Q Q, Li X X, Zhang G Q, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system [J]. Appl. Therm. Eng., 2018, 141: 1092-1100. |
9 | Zhang X, Liu C Z, Rao Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material [J]. Clean. Prod., 2018, 201: 916-924. |
23 | Wang T, Tseng K J, Zhao J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies [J]. Appl. Energ., 2014, 134: 229-238. |
24 | Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles [J]. J. Power Sources, 2013, 239: 30-36. |
25 | Sun H G, Wang X H, Tossan B, et al. Three-dimensional thermal modeling of a lithium-ion battery pack [J]. J. Power Sources, 2012, 206: 349-356. |
26 | Sun H G, Dixon R. Development of cooling strategy for an air cooled lithium-ion battery pack [J]. J. Power Sources, 2014, 272: 404-414. |
27 | Xie J H, Ge Z J, Zang M Y, et al. Structural optimization of lithium-ion battery pack with forced air cooling system [J]. Appl. Therm. Eng., 2017, 126: 583-593. |
28 | 白帆飞, 陈明彪, 宋文吉, 等. 锂离子电池组风冷结构设计与优化[J]. 新能源进展, 2016, 4(5): 358-363. |
Bai F F, Chen M B, Song W J, et al. Design and optimization of air-cooled structure for lithium-ion battery pack [J]. Advances in New and Renewable Energy, 2016, 4(5): 358-363. | |
29 | Chen K, Wang S F, Song M X, et al. Structure optimization of parallel air-cooled battery thermal management system [J]. Int. J. Heat Mass Transf., 2017, 111: 943-952. |
30 | Chen K, Chen Y M, She Y Q, et al. Construction of effective symmetrical air-cooled system for battery thermal management [J]. Appl. Therm. Eng., 2020, 166: 114679. |
31 | Wu W X, Wu W, Wang S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material [J]. Int. J. Heat Mass Transf., 2018, 121: 967-977. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||