CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 669-680.DOI: 10.11949/0438-1157.20200690
• Reviews and monographs • Previous Articles Next Articles
WANG Huaiyuan(),LIN Dan,ZHANG Xiguang,YUAN Sicheng
Received:
2020-06-02
Revised:
2020-07-31
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Huaiyuan
通讯作者:
汪怀远
作者简介:
汪怀远(1977—),男,博士,教授,基金资助:
CLC Number:
WANG Huaiyuan, LIN Dan, ZHANG Xiguang, YUAN Sicheng. Research progress on preparation, regulation and application of waterborne superhydrophobic coatings[J]. CIESC Journal, 2021, 72(2): 669-680.
汪怀远, 林丹, 张曦光, 袁思成. 水性超疏水涂层的制备、调控与应用的研究进展[J]. 化工学报, 2021, 72(2): 669-680.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 Scheme showing the overturn of the hydrophilic groups caused by water immersion or air drying on SH coatings fabricated by waterborne resins[52]
Materials | Regulating strategy | Test | Condition | Distance or cycle | Wettability after test |
---|---|---|---|---|---|
PTFE-ZnAc2-NaCl[ | integrated composite structure | liner friction | 2.7 kPa, 1500 meshes | 4.5m | WCA=145.1° |
micro/nanotextured PDMS[ | rotary friction | 20 kPa, 240 meshes | 50 m | WCA=161° | |
silicone-acrylic[ | improve coating interface | liner friction | 100 g, 600 meshes | 6 m | WCA>150° |
water-based acrylate copolymer/silica[ | liner friction | 200 g, 2000 meshes | 300 cycles | WCA=157° | |
WPU/F-SiO2[ | rotary friction | 250 g, CS 10 wheels | 250 cycles | WCA=159.2° | |
PDMS-PES[ | washing | — | 4 cycles | WCA=141° | |
AP-ZnO@PTFE[ | liner friction | 200 g, 1000 meshes | 5 m | WCA>150° | |
WFPU4[ | cross-linking interaction | liner friction | — | 25 m | WSA=7.6° |
SAC and silica sol[ | rotary friction | 250 g, CS 10 wheels | 300 cycles | WCA=151.3° | |
Zonyl321/FAS/PTFE[ | self-repairing | martindale method | 12 kPa | 2000 cycles | CA=148° |
pH-capsules[ | soak in NaCl(aq) | 10 kPa, 320 meshes | 7 cycles | WCA>150° | |
U-capsules[ | liner friction | 20 kPa, 1500 meshes | 10 cycles | WCA>150° |
Table 1 Control strategy of mechanical properties and its mechanical durability of waterborne superhydrophobic coatings
Materials | Regulating strategy | Test | Condition | Distance or cycle | Wettability after test |
---|---|---|---|---|---|
PTFE-ZnAc2-NaCl[ | integrated composite structure | liner friction | 2.7 kPa, 1500 meshes | 4.5m | WCA=145.1° |
micro/nanotextured PDMS[ | rotary friction | 20 kPa, 240 meshes | 50 m | WCA=161° | |
silicone-acrylic[ | improve coating interface | liner friction | 100 g, 600 meshes | 6 m | WCA>150° |
water-based acrylate copolymer/silica[ | liner friction | 200 g, 2000 meshes | 300 cycles | WCA=157° | |
WPU/F-SiO2[ | rotary friction | 250 g, CS 10 wheels | 250 cycles | WCA=159.2° | |
PDMS-PES[ | washing | — | 4 cycles | WCA=141° | |
AP-ZnO@PTFE[ | liner friction | 200 g, 1000 meshes | 5 m | WCA>150° | |
WFPU4[ | cross-linking interaction | liner friction | — | 25 m | WSA=7.6° |
SAC and silica sol[ | rotary friction | 250 g, CS 10 wheels | 300 cycles | WCA=151.3° | |
Zonyl321/FAS/PTFE[ | self-repairing | martindale method | 12 kPa | 2000 cycles | CA=148° |
pH-capsules[ | soak in NaCl(aq) | 10 kPa, 320 meshes | 7 cycles | WCA>150° | |
U-capsules[ | liner friction | 20 kPa, 1500 meshes | 10 cycles | WCA>150° |
1 | Pan S, Chen M, Wu L. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry [J]. ACS Appl. Mater. Interfaces, 2020, 12(4): 5157-5165. |
2 | Ye H, Zhu L, Li W, et al. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 858-867. |
3 | Erbil H Y. Practical applications of superhydrophobic materials and coatings: problems and perspectives[J]. Langmuir, 2020, 36(10): 2493-2509. |
4 | Parvate S, Dixit P, Chattopadhyay S. Superhydrophobic surfaces: insights from theory and experiment[J]. J. Phys. Chem. B, 2020, 124(8): 1323-1360. |
5 | 陈立, 周才龙, 杜京城, 等. 超疏水多孔材料的研究进展[J]. 化工学报, 2020, 71(10): 4502-4519. |
Chen L, Zhou C L, Du J C, et al. Progress of superhydrophobic porous materials[J]. CIESC Journal, 2020, 71(10): 4502-4519. | |
6 | 梁婷, 范振忠, 刘庆旺, 等. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(7): 3185-3193. |
Liang T, Fan Z Z, Liu Q W, et al. Research progress on the self-healing on superhydrophobic/ superamphiphobic surface [J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3185-3193. | |
7 | Li J, Li D, Yang Y, et al. A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation[J]. Green Chemistry, 2016, 18(2): 541-549. |
8 | Li Y, Li B, Zhao X, et al. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 39391-39399. |
9 | Zhang Y, Yao D, Wang S, et al. Large-scale fabrication of waterborne superamphiphobic coatings for flexible applications[J]. RSC Advances, 2018, 8(63): 36375-36382. |
10 | 王凯, 王德武, 侯得印, 等. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能 [J]. 化工学报, 2019, 70(1): 298-308. |
Wang K, Wang D W, Hou D Y, et al. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation [J]. CIESC Journal, 2019, 70(1): 298-308. | |
11 | 周威, 陈立, 杜京城, 等. 仿生雾水收集材料:从基础研究到性能提升策略[J]. 化工学报, 2020, 71(10): 4532-4552. |
Zhou W, Chen L, Du J C, et al. Bio-inspired fog harvesting materials: from fundamental research to promotional strategy [J]. CIESC Journal, 2020, 71(10): 4532-4552. | |
12 | Li X, Zhao S, Hu W, et al. Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2 [J]. Applied Surface Science, 2019, 481: 374-378. |
13 | Yu T, Halouane F, Mathias D, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal, 2020, 384: 123339-123347. |
14 | Zhong X, Zhou M, Wang S, et al. Preparation of water-borne non-fluorinated anti-smudge surfaces and their applications [J]. Progress in Organic Coatings, 2020, 142: 105581-105591. |
15 | Zhao J, Wang X, Xu Y, et al. Multifunctional, waterproof, and breathable nanofibrous textiles based on fluorine-free, all-water-based coatings [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15911-15918. |
16 | Zhou H, Wang H, Niu H, et al. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces [J]. Advanced Functional Materials, 2017, 27(14): 1604261-1604268. |
17 | Grozea C M, Huang S, Liu G. Water-based, heat-assisted preparation of water-repellent cotton fabrics using graft copolymers [J]. RSC Advances, 2016, 6(24): 20135-20144. |
18 | Cai R, Glinel K, De Smet D, et al. Environmentally friendly super-water-repellent fabrics prepared from water-based suspensions [J]. ACS Appl. Mater. Interfaces, 2018, 10(18): 15346-15351. |
19 | 单文雯. 纳米材料改性水性防腐涂料的研究进展[J]. 广州化工, 2019, 47(14): 17-19. |
Shan W W. Research progress on waterborne anticorrosive coatings modified by nanomaterials [J]. Guangzhou Chemical Industry, 2019, 47(14): 17-19. | |
20 | Milionis A, Dang K, Prato M, et al. Liquid repellent nanocomposites obtained from one-step water-based spray [J]. Journal of Materials Chemistry A, 2015, 3(24): 12880-12889. |
21 | 杜晨光, 夏帆, 王树涛, 等 仿生智能浸润性表面研究的新进展[J]. 高等学校化学学报, 2010, 31(3): 421-431. |
Du C G, Xia F, Wang S T, et al. Advances in bio-inspired smart surfaces with special wettability[J]. Chemical Journal of Chinese Universities, 2010, 31(3): 421-431. | |
22 | Hou L, Wang N, Wu J, et al. Bioinspired superwettability electrospun micro/nanofibers and their applications [J]. Advanced Functional Materials, 2018, 28: 1801114-1801135. |
23 | 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18): 61-83. |
Wang P W, Liu M J, Jiang L. Bioinspired multiscale interfacial materials with superwettability[J]. Acta Physica Sinica, 2016, 65(18): 61-83. | |
24 | 向静, 王宏, 朱恂, 等. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552. |
Xiang J, Wang H, Zhu X, et al. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties [J]. CIESC Journal, 2019, 70(9): 3545-3552. | |
25 | Mates J E, Schutzius T M, Bayer I S, et al. Water-based superhydrophobic coatings for nonwoven and cellulosic substrates [J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 222-227. |
26 | Morrissette J M, Carroll P J, Bayer I S, et al. A methodology to produce eco-friendly superhydrophobic coatings produced from all-water-processed plant-based filler materials [J]. Green Chemistry, 2018, 20(22): 5169-5178. |
27 | Lozhechnikova A, Bellanger H, Michen B, et al. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood [J]. Applied Surface Science, 2017, 396: 1273-1281. |
28 | Schutzius T M, Bayer I S, Qin J, et al. Water-based, nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings [J]. ACS Appl. Mater. Interfaces, 2013, 5(24): 13419-13425. |
29 | Telford A M, Easton C D, Hawkett B S, et al. Waterborne, all-polymeric, colloidal‘raspberry’particles with controllable hydrophobicity and water droplet adhesion properties [J]. Thin Solid Films, 2016, 603: 69-74. |
30 | Liu M, Hou Y, Li J, et al. Robust and self-repairing superamphiphobic coating from all-water-based spray [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 645-651. |
31 | Wang T, Bao Y, Gao Z, et al. Synthesis of mesoporous silica-shell/oil-core microspheres for common waterborne polymer coatings with robust superhydrophobicity [J]. Progress in Organic Coatings, 2019, 132: 275-282. |
32 | Huang S, Liu G, Zhang K, et al. Water-based polyurethane formulations for robust superhydrophobic fabrics [J]. Chemical Engineering Journal, 2019, 360: 445-451. |
33 | Zhao D, Pan M, Yuan J, et al. A waterborne coating for robust superamphiphobic surfaces [J]. Progress in Organic Coatings, 2020, 138: 105368-105375. |
34 | Ge M, Cao C, Liang F, et al. A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature [J]. Nanoscale Horizons, 2020, 5(1): 65-73. |
35 | Meyer M F, McConnell R L, Joyner F B. Water-dispersible polyolefin compositions useful as hot melt adhesives: US 3919176[P]. 1975-11-11. |
36 | Liu M, Li J, Hou Y, et al. Inorganic adhesives for robust superwetting surfaces [J]. ACS Nano, 2017, 11(1): 1113-1119. |
37 | Mates J E, Ibrahim R, Vera A, et al. Environmentally-safe and transparent superhydrophobic coatings [J]. Green Chemistry, 2016, 18(7): 2185-2192. |
38 | Zheng S, Bellido-Aguilar D A, Huang Y, et al. Mechanically robust hydrophobic bio-based epoxy coatings for anti-corrosion application [J]. Surface and Coatings Technology, 2019, 363: 43-50. |
39 | Zheng S, Bellido-Aguilar D A, Wu X, et al. Durable waterborne hydrophobic bio-epoxy coating with improved anti-icing and self-cleaning performance [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 641-649. |
40 | Lu L, Hu C, Zhu Y, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework [J]. Cellulose, 2018, 25(7): 4223-4238. |
41 | Li M, Bian C, Yang G, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion [J]. Chemical Engineering Journal, 2019, 368: 350-358. |
42 | Wang H, Zhou H, Liu S, et al. Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings [J]. RSC Advances, 2017, 7(54): 33986-33993. |
43 | Razavi S M R, Masoomi M, Bagheri R. Facile strategy toward developing a scalable, environmental friendly and self-cleaning superhydrophobic surface [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541: 108-116. |
44 | 刘雷, 张粤, 李霞, 等. 铝合金表面耐久性超疏水防护膜的制备与表征 [J]. 化工学报, 2020, 71(10): 4750-4759. |
Liu L, Zhang Y, Li X, et al. Preparation and characterization of durable superhydrophobic protective coatings on aluminum alloy [J]. CIESC Journal, 2020, 71(10): 4750-4759. | |
45 | Choi D, Yoo J, Park S M, et al. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching [J]. Applied Surface Science, 2017, 393:449-456. |
46 | Zhao Y, Xu J B, Zhan J, et al. Electrodeposited superhydrophobic mesoporous silica films co-embedded with template and corrosion inhibitor for active corrosion protection [J]. Applied Surface Science, 2020, 508: 145242-145243. |
47 | Wang H, Hu Z, Zhu Y, et al. Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anticorrosion function by a water-based one-step electrodeposition method [J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 933-941. |
48 | Wang M, Zhang Z, Li Y, et al. An eco-friendly one-step method to fabricate superhydrophobic nanoparticles with hierarchical architectures [J]. Chemical Engineering Journal, 2017, 327: 530-538. |
49 | Wang M, Zhang Z, Li Y, et al. Multifunctional superamphiphobic fabric with hierarchical structures via a mild water-based strategy [J]. Applied Surface Science, 2019, 470: 687-694. |
50 | Liu Z H, Pang X Q, Wang K T, et al. Superhydrophobic coatings prepared by the in situ growth of silicone nanofilaments on alkali-activated geopolymers surface [J]. ACS Appl. Mater. Interfaces, 2019, 11(25): 22809-22816. |
51 | Ghosh N, Singh A V, Vaidya A A. Water-based layer-by-layer surface chemical modification of biomimetic materials: oil repellency [J]. ACS Appl. Mater. Interfaces, 2013, 5(18): 8869-8874. |
52 | Zhang J, Zhang W, Lu J, et al. Aqueous epoxy-based superhydrophobic coatings: fabrication and stability in water [J]. Progress in Organic Coatings, 2018, 121: 201-208. |
53 | Zhu C, Lin W, Chen L, et al. Deep color, heat-reflective, superhydrophobic and anti-soiling coatings with waterborne silicone emulsion [J]. Solar Energy Materials and Solar Cells, 2019, 199: 129-135. |
54 | Baidya A, Das S K, Ras R H A, et al. Fabrication of a waterborne durable superhydrophobic material functioning in air and under oil [J]. Advanced Materials Interfaces, 2018, 5(11): 1701523-1701531. |
55 | Tian X, Verho T, Ras R H A. Moving superhydrophobic surfaces toward real-world applications [J]. Science, 2016, 352(6282): 142-143. |
56 | Zhang Y Y, Ge Q, Yang L L, et al. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores [J]. Applied Surface Science, 2015, 339: 151-157. |
57 | Davis A, Surdo S, Caputo G, et al. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths [J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2907-2917. |
58 | Yang J, Liang H, Zeng L, et al. Facile fabrication of superhydrophobic nanocomposite coatings based on water-based emulsion latex [J]. Advanced Materials Interfaces, 2018, 5(15): 1800207-1800214. |
59 | Li M, Li Y, Xue F, et al. Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings [J]. Applied Surface Science, 2018, 447: 489-499. |
60 | Zheng H, Pan M, Wen J, et al. Robust, Transparent, and superhydrophobic coating fabricated with waterborne polyurethane and inorganic nanoparticle composites [J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8050-8060. |
61 | Liu M, Hou Y, Li J, et al. An all-water-based system for robust superhydrophobic surfaces [J]. J. Colloid Interface Sci., 2018, 519: 130-136. |
62 | Zhao B, Jia R. Preparation of super-hydrophobic films based on waterborne polyurethane and their hydrophobicity characteristics [J]. Progress in Organic Coatings, 2019, 135: 440-448. |
63 | Ye H, Zhu L, Li W. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications [J]. Journal of Materials Chemistry A, 2017, 5: 9882-9890. |
64 | Chen K, Gu K, Qiang S, et al. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings [J]. RSC Advances, 2017, 7(1): 543-550. |
65 | Chen K, Zhou S, Yang S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules [J]. Advanced Functional Materials, 2015, 25(7): 1035-1041. |
66 | Chang T, Panhwar F, Zhao G. Flourishing self-healing surface materials: recent progresses and challenges [J]. Advanced Materials Interfaces, 2020, 7(6): 1901959-1901995. |
67 | Fu S, Zhou H, Wang H, et al. Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings [J]. RSC Advances, 2018, 8(2): 717-723. |
68 | Niu L, Kang Z. Spray deposition process to fabricate Cu2O superhydrophobic surfaces on brass mesh for efficient oil-water separation [J]. Materials Letters, 2018, 210: 97-100. |
69 | Davis A, Yeong Y H, Steele A, et al. Superhydrophobic nanocomposite surface topography and ice adhesion [J]. ACS Appl. Mater. Interfaces, 2014, 6(12): 9272-9279. |
70 | 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用 [J]. 化学进展, 2017, 29(1): 102-118. |
Zheng H K, Chang S N, Zhao Y Y. Anti-icing & icephobic mechanism and applications of superhydrophobic / ultra slippery surface [J]. Progress in Chemistry, 2017, 29(1): 102-118. | |
71 | 李亚斌. 环境友好水性超疏水、超双疏涂层的制备及性能研究 [D]. 兰州: 兰州理工大学, 2019. |
Li Y B. Preparation and properties of environmentally friedly waterborne superhydrophobic and superamphiphobic coatings [D]. Lanzhou: Lanzhou University of Technology, 2019. | |
72 | Luo X, Hu W, Cao M, et al. An environmentally friendly approach for the fabrication of conductive superhydrophobic coatings with sandwich-like structures [J]. Polymers (Basel), 2018, 10(4): 378-389. |
73 | Aslanidou D, Karapanagiotis I, Lampakis D. Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone [J]. Materials (Basel), 2018, 11(4): 1155-1164. |
74 | Aslanidou D, Karapanagiotis I, Panayiotou C. Superhydrophobic, superoleophobic coatings for the protection of silk textiles [J]. Progress in Organic Coatings, 2016, 97: 44-52. |
75 | Chatzigrigoriou A, Manoudis P N, Karapanagiotis I. Fabrication of water repellent coatings using waterborne resins for the protection of the cultural heritage [J]. Macromolecular Symposia, 2013, 331/332(1): 158-165. |
76 | Baidya A, Ganayee M A, Jakka Ravindran S, et al. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks [J]. ACS Nano, 2017, 11(11): 11091-11099. |
77 | Liu M, Mao T, Zhang Y, et al. General water-based strategy for the preparation of superhydrophobic coatings on smooth substrates [J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13783-13790. |
78 | Chen K, Zhou J, Che X, et al. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings [J]. J. Colloid Interface Sci., 2020, 566: 401-410. |
79 | Gou W, Che X, Yu X, et al. Facile fabrication of waterborne fabric coatings with multifunctional superhydrophobicity and thermal insulation [J]. Materials Letters, 2019, 250: 123-126. |
80 | Naderizadeh S, Heredia-Guerrero J A, Caputo G, et al. Superhydrophobic coatings from beeswax-in-water emulsions with latent heat storage capability [J]. Advanced Materials Interfaces, 2019, 6(5): 1801782-1801792. |
81 | Zhang J, Lin W, Zhu C, et al. Dark, infrared reflective, and superhydrophobic coatings by waterborne resins [J]. Langmuir, 2018, 34(19): 5600-5605. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[6] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[7] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[8] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[9] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[10] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[11] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[12] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[13] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[14] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[15] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||