CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1156-1168.DOI: 10.11949/0438-1157.20200905
• Material science and engineering, nanotechnology • Previous Articles Next Articles
WEI Juan(),WANG Yujun(),LUO Guangsheng
Received:
2020-07-06
Revised:
2020-08-27
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Yujun
通讯作者:
王玉军
作者简介:
魏娟(1995—),女,硕士,基金资助:
CLC Number:
WEI Juan, WANG Yujun, LUO Guangsheng. Influence of pore volume and heating process on preparation of aluminum nitride powder by carbothermal reduction method[J]. CIESC Journal, 2021, 72(2): 1156-1168.
魏娟, 王玉军, 骆广生. 铝源孔容和焙烧升温过程对碳热还原法制备氮化铝粉体的影响[J]. 化工学报, 2021, 72(2): 1156-1168.
Add to citation manager EndNote|Ris|BibTeX
序号 | 组分 | 微反出口pH | 比表面积/(m2/g) | 孔容/(ml/g) | 平均孔径/nm | 产品氮化率 |
---|---|---|---|---|---|---|
1 | AlOOH | 10.32 | 320.40 | 0.17 | 9.29 | 0.332 |
AlOOH+C | 10.32 | 132.7 | 0.14 | 9.02 | 0.332 | |
2 | AlOOH | 5.09 | 251.55 | 0.38 | 6.04 | 0.367 |
AlOOH+C | 5.09 | 88.90 | 0.19 | 8.59 | 0.367 | |
3 | AlOOH | 6.33 | 279.77 | 0.71 | 10.13 | 0.397 |
AlOOH+C | 6.33 | 97.35 | 0.25 | 10.47 | 0.397 | |
4 | AlOOH | 8.37 | 343.73 | 0.95 | 11.07 | 0.403 |
AlOOH+C | 8.37 | 86.67 | 0.23 | 10.82 | 0.403 | |
5 | AlOOH | 8.92 | 396.10 | 1.13 | 11.43 | 0.342 |
AlOOH+C | 8.92 | 145.70 | 0.16 | 4.51 | 0.342 | |
6 | C | — | 318.91 | 0.92 | 11.56 | — |
Table 1 BET data and nitrading rate of γ-AlOOH with different pore volumes before and after mixing with carbon black (1400℃, 3 h)
序号 | 组分 | 微反出口pH | 比表面积/(m2/g) | 孔容/(ml/g) | 平均孔径/nm | 产品氮化率 |
---|---|---|---|---|---|---|
1 | AlOOH | 10.32 | 320.40 | 0.17 | 9.29 | 0.332 |
AlOOH+C | 10.32 | 132.7 | 0.14 | 9.02 | 0.332 | |
2 | AlOOH | 5.09 | 251.55 | 0.38 | 6.04 | 0.367 |
AlOOH+C | 5.09 | 88.90 | 0.19 | 8.59 | 0.367 | |
3 | AlOOH | 6.33 | 279.77 | 0.71 | 10.13 | 0.397 |
AlOOH+C | 6.33 | 97.35 | 0.25 | 10.47 | 0.397 | |
4 | AlOOH | 8.37 | 343.73 | 0.95 | 11.07 | 0.403 |
AlOOH+C | 8.37 | 86.67 | 0.23 | 10.82 | 0.403 | |
5 | AlOOH | 8.92 | 396.10 | 1.13 | 11.43 | 0.342 |
AlOOH+C | 8.92 | 145.70 | 0.16 | 4.51 | 0.342 | |
6 | C | — | 318.91 | 0.92 | 11.56 | — |
组分 | 编号 | 混合条件 | 比表面积/(m2/g) | 孔容/(ml/g) | 平均孔径/nm | 产品氮化率 |
---|---|---|---|---|---|---|
纯AlOOH | a | 无处理 | 279.77 | 0.71 | 10.13 | — |
b | 干磨10 min | 49.07 | 0.13 | 10.51 | — | |
纯炭黑 | c | 无处理 | 318.91 | 0.92 | 11.56 | — |
AlOOH+C | 1 | 干磨3 min | 232.17 | 0.51 | 8.78 | 0.351 |
2 | 干磨10 min | 97.35 | 0.25 | 10.47 | 0.397 | |
3 | 干磨30 min | 56.32 | 0.19 | 13.5 | 0.321 | |
4 | 湿磨30 min | 191.6 | 0.42 | 8.79 | 0.412 | |
5 | 微反后混合 | 96.17 | 0.13 | 3.8 | 0.404 | |
6 | 微反中混合 | 49.97 | 0.1 | 3.81 | 0.571 |
Table 2 BET data and nitrading rate of different mixing methods
组分 | 编号 | 混合条件 | 比表面积/(m2/g) | 孔容/(ml/g) | 平均孔径/nm | 产品氮化率 |
---|---|---|---|---|---|---|
纯AlOOH | a | 无处理 | 279.77 | 0.71 | 10.13 | — |
b | 干磨10 min | 49.07 | 0.13 | 10.51 | — | |
纯炭黑 | c | 无处理 | 318.91 | 0.92 | 11.56 | — |
AlOOH+C | 1 | 干磨3 min | 232.17 | 0.51 | 8.78 | 0.351 |
2 | 干磨10 min | 97.35 | 0.25 | 10.47 | 0.397 | |
3 | 干磨30 min | 56.32 | 0.19 | 13.5 | 0.321 | |
4 | 湿磨30 min | 191.6 | 0.42 | 8.79 | 0.412 | |
5 | 微反后混合 | 96.17 | 0.13 | 3.8 | 0.404 | |
6 | 微反中混合 | 49.97 | 0.1 | 3.81 | 0.571 |
混合方式 | O/%(质量) | C/%(质量) |
---|---|---|
干磨10 min | 0.62 | 0.063 |
微反应器中混合 | 0.57 | 0.114 |
Table 3 O and C content of AlN by different mixing methods
混合方式 | O/%(质量) | C/%(质量) |
---|---|---|
干磨10 min | 0.62 | 0.063 |
微反应器中混合 | 0.57 | 0.114 |
反应机理 | R2 | ||||
---|---|---|---|---|---|
1300℃ | 1400℃ | 1450℃ | 1500℃ | 1550℃ | |
表面化学反应控制 | 0.940 | 0.982 | 0.940 | 0.942 | 0.983 |
内扩散控制 | 0.932 | 0.976 | 0.994 | 0.998 | 0.996 |
Table 4 Linear fitting R2 values under surface chemical reaction control and internal diffusion control
反应机理 | R2 | ||||
---|---|---|---|---|---|
1300℃ | 1400℃ | 1450℃ | 1500℃ | 1550℃ | |
表面化学反应控制 | 0.940 | 0.982 | 0.940 | 0.942 | 0.983 |
内扩散控制 | 0.932 | 0.976 | 0.994 | 0.998 | 0.996 |
1 | Sheppard L M. Aluminum nitride - a versatile but challenging material [J]. American Ceramic Society Bulletin, 1990, 69(11): 1801-1812. |
2 | 严光能, 邓先友, 林金堵. 高导热氮化铝基板在航空工业的应用研究[J]. 印制电路信息, 2017, 25(10): 32-37. |
Yan G N, Deng X Y, Lin J D. The research of high-thermal-conductive aluminum nitride substrate in airport power electronics [J]. Printed Circuit Information, 2017, 25(10): 32-37. | |
3 | He X, Shi L, Guo Y, et al. Study on microstructure and dielectric properties of aluminum nitride ceramics [J]. Materials Characterization, 2015, 106, 404-410. |
4 | Son H W, Kim B N, Suzuki T S, et al. Fabrication of translucent AlN ceramics with MgF2 additive by spark plasma sintering [J]. Journal of the American Ceramic Society, 2018, 101(10): 4430-4433. |
5 | Jackson T B, Virkar A V, More K L, et al. High-thermal-conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors [J]. Journal of the American Ceramic Society, 1997, 80(6): 1421-1435. |
6 | Fei C L, Liu X L, Zhu B P, et al. AlN piezoelectric thin films for energy harvesting and acoustic devices [J]. Nano Energy, 2018, 51(1): 146-161. |
7 | 张浩, 崔嵩, 何金奇. 高性能氮化铝粉体技术发展现状[J]. 真空电子技术, 2015, (5): 14-18. |
Zhang H, Cui S, He J Q. Technology development of high-performance AlN powders [J]. Vacuum Electronics, 2015, (5): 14-18. | |
8 | 王毅, 李东红, 张岩岩. 碳热还原法制备氮化铝的影响因素[J]. 真空电子技术, 2019, (3): 64-66+72. |
Wang Y, Li D H, Zhang Y Y. Influencing factors of carbothermic reduction for AlN synthesis [J]. Vacuum Electronics, 2019, (3): 64-66+72. | |
9 | Cinar F S, Kizilirmak V, Derin B, et al. Carbothermal reduction - nitridation study of seydisehir alumina [J]. Silicates Industries, 2004, 69(7/8): 305-310. |
10 | 侯海兰, 冯月斌, 字富庭, 等. 碳热还原氮化法制备氮化铝的研究进展[J].粉末冶金工业, 2019, 29(1): 69-72. |
Hou H L, Feng Y B, Zi F T, et al. Research progress in preparation of aluminum nitride by carbothermal reduction nitridation [J]. Powder Metallurgy Industry, 2019, 29(1): 69-72. | |
11 | 张笑. 氧化铝碳热还原氮化的机理研究[D]. 昆明: 昆明理工大学, 2017. |
Zhang X. Research on mechanism of carbothermal reduction nitriding of alumina [D]. Kunming: Kunming University of Science and Technology, 2017. | |
12 | 马丁. 适合于导热基板用AlN粉体的制备与表征[D]. 北京: 北京交通大学, 2019. |
Ma D. Preparation and characterization of AlN powders for thermally conductive substrates [D]. Beijing: Beijing Jiaotong University, 2019. | |
13 | 秦明礼, 曲选辉, 林健凉, 等. 原料对碳热还原法合成氮化铝粉末的影响[J].中南工业大学学报(自然科学版), 2002, (5): 505-508. |
Qin M L, Qu X H, Lin J L, et al. Effect of starting materials on the synthesis of aluminum nitride powders by carbothermal reduction method[J]. J. Cent. South. Univ. Technol., 2002, (5): 505-508. | |
14 | Kimura I, Ichiya K, Ishii M, et al. Synthesis of fine AlN powder by a floating nitridation technique using an N2/NH3 gas mixture [J]. Journal of Materials Science Letters, 1989, 8(3): 303-304. |
15 | Tsuge A, Inoue H, Kasori M, et al. Raw-material effect on AlN powder synthesis from Al2O3 carbothermal reduction [J]. Journal of Materials Science, 1990, 25(5): 2359-2361. |
16 | Mylinh D T, Yoon D H, Kim C Y. Aluminum nitride formation from aluminum oxide/phenol resin solid-gel mixture by carbothermal reduction nitridation method [J]. Archives of Metallurgy and Materials, 2015, 60(2): 1551-1555. |
17 | Pathak L C, Ray A K, Das S, et al. Carbothermal synthesis of nanocrystalline aluminum nitride powders [J]. Journal of the American Ceramic Society, 1999, 82(1): 257-260. |
18 | Xi S Q, Liu X K, Li P L, et al. AlN ceramics synthesized by carbothermal reduction of mechanical activated Al2O3 [J]. Journal of Alloys and Compounds, 2008, 457(1/2): 452-456. |
19 | 刘新宽, 马明亮, 周敬恩, 等. 高能球磨对碳热还原合成氮化铝的作用[J]. 兵器材料科学与工程, 1999, (3): 23-27. |
Liu X K, Ma M L, Zhou J E. Effects of high energy ball milling on ain snythesis from Al2O3 by carbothermal reduction nitridation[J]. Ordnance Material Science and Engineering, 1999, (3): 24-28. | |
20 | Mao X X, Li J, Zhang H L, et al. Synthesis of AlN powder by carbothermal reduction-nitridation of alumina/carbon black foam [J]. Journal of Inorganic Materials, 2017, 32(10): 1115-1120. |
21 | Chikami H, Fukushima J, Hayashi Y, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature [J]. Journal of the American Ceramic Society, 2018, 101(11): 4905-4910. |
22 | 马艳红, 陈玮. 溶胶-凝胶法制备氮化铝粉体[J]. 真空电子技术, 2009, (4): 78-80. |
Ma Y H, Chen W. Preparation of AlN by the sol-gel method [J]. Vacuum Electronics, 2009, (4): 78-80. | |
23 | 李亚伟, 李楠, 袁润章. Al2O3-C-N2系统反应热力学初步探讨[J]. 硅酸盐通报, 2001, (4): 3-8. |
Li Y W, Li N, Yuan R Z. Thermodynamical discussion of the reaction evolution in Al2O3-C-N-2 system [J]. Bulletin of the Chinese Ceramic Society, 2001, (4): 3-8. | |
24 | Yu J K, Ueno S, Li H X, et al. Improvement of graphitization of isotropic carbon by Al2O3 formed from aluminium chelate compound [J]. Journal of the European Ceramic Society, 1999, 19(16): 2843-2848. |
25 | 傅仁利, 于洪珍, 张月铭, 等. 碳热还原法合成氮化铝的机理与热力学条件[J]. 中国矿业大学学报, 2002, (5): 415-420. |
Fu R L, Yu H Z, Zhang Y M, et al. Mechanisms and thermodynamics conditions of carbothermal reduction nitridation reactions [J]. Journal of China University of Mining and Technology, 2002, (5): 415-420. | |
26 | Shen C Y, Qiu T, Lu Y M. Morphology and reaction mechanism of AIN fibers synthesized by carbothermal reduction [J]. Key Engineering Materials, 2005, 280/283(2): 1399-1402. |
27 | Suehiro T, Hirosaki N, Terao R, et al. Synthesis of aluminum nitride nanopowder by gas-reduction-nitridation method [J]. Journal of the American Ceramic Society, 2003, 86(6): 1046-1048. |
28 | 匡加才. AlN粉体及陶瓷的制备、结构与性能研究[D]. 长沙: 国防科学技术大学, 2004. |
Kuang J C. Processing, microstructure and thermal properties of AlN ceramics and AlN powder prepared by modified carbothermal reduction method[D]. Changsha: National University of Defense Technology, 2004. | |
29 | Lefort P, Tetard D, Tristant P. Formation of aluminium carbide by carbothermal reduction of alumina - role of the gaseous aluminium phase [J]. Journal of the European Ceramic Society, 1993, 12(2): 123-129. |
30 | Wan Y, Liu Y, Wang Y, et al. Preparation of large-pore-volume gamma-alumina vanofibers with a varrow pore size distribution in a membrane sispersion microreactor [J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8888-8894. |
31 | Galvez M E, Frei A, Halmann M, et al. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 2. Kinetic analysis [J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2047-2053. |
[1] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[2] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[3] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[4] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[5] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[6] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[7] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[8] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[9] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[10] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[11] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[12] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[13] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
[14] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[15] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||