CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1169-1180.DOI: 10.11949/0438-1157.20201085
• Material science and engineering, nanotechnology • Previous Articles Next Articles
CAO Jianing1(),GAO Xiang1,2(),LUO Yingwu1,SU Rongxin3
Received:
2020-08-03
Revised:
2020-09-07
Online:
2021-02-05
Published:
2021-02-05
Contact:
GAO Xiang
通讯作者:
高翔
作者简介:
曹佳宁(1997—),女,硕士研究生,基金资助:
CLC Number:
CAO Jianing, GAO Xiang, LUO Yingwu, SU Rongxin. Study on preparation and performance of aqueous binder for lithium iron phosphate electrodes in lithium-ion battery[J]. CIESC Journal, 2021, 72(2): 1169-1180.
曹佳宁, 高翔, 罗英武, 苏荣欣. 一种用于磷酸铁锂电极的水性黏结剂制备与性能研究[J]. 化工学报, 2021, 72(2): 1169-1180.
Add to citation manager EndNote|Ris|BibTeX
Polymer | Conversion/% |
---|---|
PSEHA-1∶11 | 99.57 |
PSEHA-3∶7 | 99.34 |
PEHA | 99.45 |
Table 1 Monomer conversion of binders with different monomer ratio
Polymer | Conversion/% |
---|---|
PSEHA-1∶11 | 99.57 |
PSEHA-3∶7 | 99.34 |
PEHA | 99.45 |
Polymer | Particle size/nm | PDI |
---|---|---|
PSEHA-1∶11 | 64.03 | 0.027 |
PSEHA-3∶7 | 69.98 | 0.022 |
PEHA | 58.8 | 0.067 |
Table 2 Size of PSEHA copolymers
Polymer | Particle size/nm | PDI |
---|---|---|
PSEHA-1∶11 | 64.03 | 0.027 |
PSEHA-3∶7 | 69.98 | 0.022 |
PEHA | 58.8 | 0.067 |
Binder | Swelling ratio(25℃, 120 h) |
---|---|
PSEHA-1∶11 | 15.38 |
PSEHA-3∶7 | 14.81 |
PEHA | 20.59 |
SBR | 32.86 |
PVDF | 42.31 |
Table 3 Electrolyte uptake of electrodes fabricated by different binders
Binder | Swelling ratio(25℃, 120 h) |
---|---|
PSEHA-1∶11 | 15.38 |
PSEHA-3∶7 | 14.81 |
PEHA | 20.59 |
SBR | 32.86 |
PVDF | 42.31 |
State | Binder | R/Ω |
---|---|---|
before cycles | SBR | 87.15 |
PSEHA-1∶11 | 88.21 | |
after cycles | SBR | 188.4 |
PSEHA-1∶11 | 123 |
Table 4 The resistances of the cells
State | Binder | R/Ω |
---|---|---|
before cycles | SBR | 87.15 |
PSEHA-1∶11 | 88.21 | |
after cycles | SBR | 188.4 |
PSEHA-1∶11 | 123 |
1 | Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982. |
2 | Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | Goodenough J B, Park K. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
4 | Xie J, Lu Y. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499. |
5 | Wu M, Xiao X, Vukmirovic N, et al. Toward an ideal polymer binder design for high-capacity battery anodes[J]. Journal of the American Chemical Society, 2013, 135(32): 12048-12056. |
6 | Shi Y, Zhou X, Yu G. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries[J]. Accounts of Chemical Research, 2017, 50(11): 2642-2652. |
7 | Li J, Wu Z, Lu Y, et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7(24): 1701185. |
8 | Liu W, Yang M, Wu H, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-state Letters, 2005, 8(2): A100-A103. |
9 | Du Pasquier A, Disma F, Bowmer T, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477. |
10 | Maleki H, Deng G, Kerzhner-Haller I, et al. Thermal stability studies of binder materials in anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(12): 4470-4475. |
11 | Li C, Lin Y. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries[J]. Journal of Power Sources, 2012, 220: 413-421. |
12 | Cai Z P, Liang Y, Li W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189(1): 547-551. |
13 | Chong J, Xun S, Zheng H, et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196(18): 7707-7714. |
14 | Valvo M, Liivat A, Eriksson H, et al. Iron-based electrodes meet water-based preparation, fluorine-free electrolyte and binder: a chance for more sustainable lithium-ion batteries?[J]. ChemSusChem, 2017, 10(11): 2431-2448. |
15 | Jeong S S, Böckenfeld N, Balducci A, et al. Natural cellulose as binder for lithium battery electrodes[J]. Journal of Power Sources, 2012, 199: 331-335. |
16 | Huang S, Ren J, Liu R, et al. Enhanced electrochemical properties of LiFePO4 cathode using waterborne lithiated ionomer binder in Li-ion batteries with low amount[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12650-12657. |
17 | Gao S, Su Y, Bao L, et al. High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder[J]. Journal of Power Sources, 2015, 298: 292-298. |
18 | Zhu C L, Tao C, Bao J J, et al. Waterborne polyurethane used as binders for lithium-ion battery with improved electrochemical properties[J]//Advanced Materials Research, 2015, 1090:199-204. |
19 | Nguyen V H, Wang W L, Jin E M, et al. Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode[J]. Applied Surface Science, 2013, 282: 444-449. |
20 | Prosini P P, Carewska M, Cento C, et al. Polyvinylacetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 150: 129-135. |
21 | Qiu L, Shao Z, Wang D, et al. Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries[J]. Cellulose, 2014, 21(4): 2789-2796. |
22 | Eliseeva S N, Levin O V, Tolstopyatova E G, et al. Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries[J]. Russian Journal of Applied Chemistry, 2015, 88(7): 1146-1149. |
23 | Tsao C, Wu E, Lee W, et al. Fluorinated copolymer functionalized with ethylene oxide as novel water-borne binder for a high-power lithium ion battery: synthesis, mechanism, and application[J]. ACS Applied Energy Materials, 2018, 1(8): 3999-4008. |
24 | Yamamoto H, Mori H. SBR binder (for negative electrode) and ACM binder (for positive electrode)[M]. Springer, 2009, 163-179. |
25 | Chou S, Pan Y, Wang J, et al. Small things make a big difference: binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20347-20359. |
26 | Aoki S, Han Z, Yamagiwa K, et al. Acrylic acid-based copolymers as functional binder for silicon/graphite composite electrode in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(12): A2245-A2249. |
27 | Lee Y, Kim J, Noh J, et al. Wearable textile battery rechargeable by solar energy[J]. Nano letters, 2013, 13(11): 5753-5761. |
28 | Park G, Park Y, Park J, et al. Flexible and wrinkle-free electrode fabricated with polyurethane binder for lithium-ion batteries[J]. RSC Advances, 2017, 7(26): 16244-16252. |
29 | Han Z, Yabuuchi N, Shimomura K, et al. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(10): 9014-9020. |
30 | Zheng Z, Gao X, Luo Y, et al. Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity[J]. Macromolecules, 2016, 49(6): 2179-2188. |
31 | 魏迪锋. 锂离子电池硅基负极制备及其负载量和电化学性能提升研究[D]. 杭州: 浙江大学, 2019. |
Wei D F. The preparation of silicon-based anode for lithium-ion battery and study on its loading and electrochemical performance improvement [D]. Hangzhou: Zhejiang University, 2019. | |
32 | Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries[J]. Nature Energy, 2020, 5187: 561-568. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||