CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 521-533.DOI: 10.11949/0438-1157.20201004
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
LAN Bin1,2,3(),XU Ji1,2,3,LIU Zhicheng4,WANG Junwu1,2,3()
Received:
2020-07-23
Revised:
2020-10-14
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Junwu
兰斌1,2,3(),徐骥1,2,3,刘志成4,王军武1,2,3()
通讯作者:
王军武
作者简介:
兰斌(1993—),男,博士研究生,基金资助:
CLC Number:
LAN Bin, XU Ji, LIU Zhicheng, WANG Junwu. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds[J]. CIESC Journal, 2021, 72(1): 521-533.
兰斌, 徐骥, 刘志成, 王军武. 连续操作密相流化床颗粒停留时间分布特性模拟放大研究[J]. 化工学报, 2021, 72(1): 521-533.
Add to citation manager EndNote|Ris|BibTeX
Diameter/μm | Mass fraction/% |
---|---|
251 418 640 | 38.3 53.2 8.5 |
Table 1 Representative particle sizes and their mass fractions used in simulations
Diameter/μm | Mass fraction/% |
---|---|
251 418 640 | 38.3 53.2 8.5 |
Parameter | Value |
---|---|
particle | |
density/(kg/m3) | 3135 |
Sauter mean particle diameter/μm | 341 |
minimum fluidization velocity/(m/s) | 0.095 |
voidage at the minimum fluidization condition | 0.48 |
sphericity | 0.65 |
mass flow rate of solids at the solid inlet/(g/s) | 5.3 |
Young’s modulus/Pa | 1×107 |
Poisson’s ratio | 0.3 |
characteristic velocity/(m/s) | 1 |
coefficient of restitution | 0.95 |
coefficient of friction | 0.3 |
coefficient of rolling friction/mm | 0.05 |
coarse-graining ratio | 5 |
time step/s | 1×10-5 |
gas | |
density/(kg/m3) | 1.2 |
viscosity/(Pa·s) | 1.8×10-5 |
gas grid size/mm | 5 |
superficial gas velocity/(m/s) | 0.4 |
time step/s | 1×10-4 |
operating pressure/Pa | 101325 |
Table 2 Simulation parameters for fluidized bed and properties of gas and particles
Parameter | Value |
---|---|
particle | |
density/(kg/m3) | 3135 |
Sauter mean particle diameter/μm | 341 |
minimum fluidization velocity/(m/s) | 0.095 |
voidage at the minimum fluidization condition | 0.48 |
sphericity | 0.65 |
mass flow rate of solids at the solid inlet/(g/s) | 5.3 |
Young’s modulus/Pa | 1×107 |
Poisson’s ratio | 0.3 |
characteristic velocity/(m/s) | 1 |
coefficient of restitution | 0.95 |
coefficient of friction | 0.3 |
coefficient of rolling friction/mm | 0.05 |
coarse-graining ratio | 5 |
time step/s | 1×10-5 |
gas | |
density/(kg/m3) | 1.2 |
viscosity/(Pa·s) | 1.8×10-5 |
gas grid size/mm | 5 |
superficial gas velocity/(m/s) | 0.4 |
time step/s | 1×10-4 |
operating pressure/Pa | 101325 |
Bed | Average | Total pressure | Total pressure |
---|---|---|---|
length/m | holdups/kg | drop/kPa | drop (exp.)/kPa |
0.07 | 1.03 | 2.303 | — |
0.15 | 2.16 | 2.231 | 2.390 |
0.31 | 4.71 | 2.373 | — |
0.63 | 9.61 | 2.382 | — |
Table 3 Total pressure drop of fluidized beds with different sizes
Bed | Average | Total pressure | Total pressure |
---|---|---|---|
length/m | holdups/kg | drop/kPa | drop (exp.)/kPa |
0.07 | 1.03 | 2.303 | — |
0.15 | 2.16 | 2.231 | 2.390 |
0.31 | 4.71 | 2.373 | — |
0.63 | 9.61 | 2.382 | — |
Bed length/m | Particle diameter/μm | Particle recovery rate/% | MRT of each particle/s | Total MRT/s | Total MRT(exp.)/s | |
---|---|---|---|---|---|---|
0.07 | 251 | 99.6 | 167.2 | 198.1 | — | 0.64 |
0.07 | 418 | 99.2 | 191.1 | |||
0.07 | 640 | 97.7 | 221.0 | |||
0.15 | 251 | 99.7 | 365.9 | 405.4 | 387.7 | 0.76 |
0.15 | 418 | 99.2 | 405.7 | |||
0.15 | 640 | 99.2 | 422.7 | |||
0.31 | 251 | 99.5 | 732.6 | 847.2 | — | 0.77 |
0.31 | 418 | 98.1 | 882.8 | |||
0.31 | 640 | 96.7 | 998.7 | |||
0.63 | 251 | 99.5 | 1458.9 | 1708.5 | — | 0.80 |
0.63 | 418 | 97.8 | 1822.2 | |||
0.63 | 640 | 97.0 | 2061.6 |
Table 4 Particle MRT of fluidized beds with different scale
Bed length/m | Particle diameter/μm | Particle recovery rate/% | MRT of each particle/s | Total MRT/s | Total MRT(exp.)/s | |
---|---|---|---|---|---|---|
0.07 | 251 | 99.6 | 167.2 | 198.1 | — | 0.64 |
0.07 | 418 | 99.2 | 191.1 | |||
0.07 | 640 | 97.7 | 221.0 | |||
0.15 | 251 | 99.7 | 365.9 | 405.4 | 387.7 | 0.76 |
0.15 | 418 | 99.2 | 405.7 | |||
0.15 | 640 | 99.2 | 422.7 | |||
0.31 | 251 | 99.5 | 732.6 | 847.2 | — | 0.77 |
0.31 | 418 | 98.1 | 882.8 | |||
0.31 | 640 | 96.7 | 998.7 | |||
0.63 | 251 | 99.5 | 1458.9 | 1708.5 | — | 0.80 |
0.63 | 418 | 97.8 | 1822.2 | |||
0.63 | 640 | 97.0 | 2061.6 |
1 | Kunii D, Levenspiel O. Fluidization Engineering[M]. 2nd ed. Boston: Butterworth Heinemann, 1991: 159-234. |
2 | 孔大力, 罗坤, 林俊杰, 等. 双流化床生物质气化的三维全循环数值模拟[J]. 化工学报, 2019, 70(8): 3167-3176. |
Kong D L, Luo K, Lin J J, et al. Three-dimensional full-loop simulation of biomass gasification in dual fluidized bed[J]. CIESC Journal, 2019, 70(8): 3167-3176. | |
3 | Yang Y, Xu J, Liu Z Y, et al. Progress in coal chemical technologies of China[J]. Review in Chemical Engineering, 2020, 36: 21-66. |
4 | Diez E, Meyer K, Bück A, et al. Influence of process conditions on the product properties in a continuous fluidized bed spray granulation process[J]. Chemical Engineering Research and Design, 2018, 139: 104-115. |
5 | 刘沁雯, 钟文琪, 邵应娟, 等. 固体燃料流化床富氧燃烧的研究动态与进展[J]. 化工学报, 2019, 70(10): 3791-3807. |
Liu Q W, Zhong W Q, Shao Y J, et al. Research trends and recent advances of oxy-fuel combustion of solid fuels in fluidized beds[J]. CIESC Journal, 2019, 70(10): 3791-3807. | |
6 | Verma V, Padding J T, Deen N G, et al. Effect of bed size on hydrodynamics in 3D gas-solid fluidized beds[J]. AIChE Journal, 2015, 61(5): 1492-1506. |
7 | Che Y, Tian Z, Liu Z, et al. CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process[J]. Powder Technology, 2015, 278: 94-110. |
8 | Couto N, Silva V B, Bispo C, et al. From laboratorial to pilot fluidized bed reactors: analysis of the scale-up phenomenon[J]. Energy Conversion & Management, 2016, 119: 177-186. |
9 | Lu B N, Zhang J Y, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255. |
10 | Zhang Y, Jia Y, Xu J, et al. CFD intensification of coal beneficiation process in gas-solid fluidized beds[J]. Chemical Engineering & Processing: Process Intensification, 2020, 148: 107825. |
11 | Gu J R, Liu Q W, Zhong W Q, et al. Study on scale-up characteristics of oxy-fuel combustion in circulating fluidized bed boiler by 3D CFD simulation[J]. Advanced Powder Technology, 2020, 31: 2136-2151. |
12 | 白书培, 康仕芳. 大颗粒流化床停留时间分布的研究[J]. 化肥工业, 2002, 29(2): 33-36. |
Bai S P, Kang S F. Study of residence time distribution of large granules in fluid-bed[J]. Chemical Fertilizer Industry, 2002, 29(2): 33-36. | |
13 | 高巍, 张聚伟, 汪印, 等. 连续进出料鼓泡流化床颗粒停留时间分布[J]. 过程工程学报, 2012, 12(1): 9-13. |
Gao W, Zhang J W, Wang Y, et al. Residence time distribution of particles in a bubbling fluidized bed with their continuous input and output[J]. The Chinese Journal of Process Engineering, 2012, 12(1): 9-13. | |
14 | Matheson G L, Herbst W A, Holt P H. Characteristics of fluid-solid systems[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1098-1104. |
15 | Cai R R, Zhang Y G, Li Q H, et al. Experimental characterizing the residence time distribution of large spherical objects immersed in a fluidized bed[J]. Powder Technology, 2014, 254(4): 22-29. |
16 | Li L, Remmelgas J, van Wachem B G M, et al. Residence time distributions of different size particles in the spray zone of a Wurster fluid bed studied using DEM-CFD[J]. Powder Technology, 2015, 280: 124-134. |
17 | Yagi S, Kunii D. Fluidized-solids reactors with continuous solids feed (Ⅲ): Conversion in experimental fluidized-solids reactors[J]. Chemical Engineering Science, 1961, 16(3/4): 380-391. |
18 | 郝志刚, 朱庆山, 李洪钟. 内构件流化床内颗粒停留时间分布及压降的研究[J]. 过程工程学报, 2006, 6(z2): 359-363. |
Hao Z G, Zhu Q S, Li H Z. Particle residence time and pressure drop in a fluidized bed with internals[J]. The Chinese Journal of Process Engineering, 2006, 6(z2): 359-363. | |
19 | Geng S, Qian Y, Zhan J, et al. Prediction of solids residence time distribution in cross-flow bubbling fluidized bed[J]. Powder Technology, 2017, 320: 555-564. |
20 | Zou Z, Zhao Y, Zhao H, et al. Hydrodynamic and solids residence time distribution in a binary bubbling fluidized bed: 3D computational study coupled with the structure-based drag model[J]. Chemical Engineering Journal, 2017, 321: 184-194. |
21 | Zou Z, Zhao Y, Zhao H, et al. CFD simulation of solids residence time distribution in a multi-compartment fluidized bed[J]. Chinese Journal of Chemical Engineering, 2017, 25 (12): 1706-1713. |
22 | Hua L N, Zhao H, Li J H, et al. Solid residence time distribution in a cross-flow dense fluidized bed with baffles[J]. Chemical Engineering Science, 2019, 200: 320-335. |
23 | Zou Z, Zhao Y L, Zhao H, et al. Numerical analysis of residence time distribution of solids in a bubbling fluidized bed based on the modified structure-based drag model[J]. Particuology, 2017, 32: 30-38. |
24 | Hua L N, Wang J, Li J, et al. CFD simulation of solids residence time distribution in a CFB riser[J]. Chemical Engineering Science, 2014, 117: 264-282. |
25 | Börner M, Bück A, Tsotsas E. DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation[J]. Chemical Engineering Science, 2017, 161: 187-197. |
26 | Zhao Y Z, Cheng Y, Wu C N, et al. Eulerian-Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer[J]. Particuology, 2010, 8 (1): 44-50. |
27 | Lu L Q, Xu J, Ge W, et al. Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method: EMMS-DPM[J]. Chemical Engineering Science, 2016, 155: 314-337. |
28 | Lan X Y, Shi X G, Zhang Y H, et al. Solids back-mixing behavior and effect of the mesoscale structure in CFB risers[J]. Industrial & Engineering Chemistry Research, 2013, 52 (34): 11888-11896. |
29 | Shi X G, Wu Y Y, Lan X Y, et al. Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach[J]. Powder Technology, 2015, 284: 130-142. |
30 | Hua L N, Wang J W. Residence time distribution of particles in circulating fluidized bed risers[J]. Chemical Engineering Science, 2018, 186: 168-190. |
31 | Nikku M, Jalali P, Ritvanen J, et al. Characterization method of average gas-solid drag for regular and irregular particle groups[J]. Powder Technology, 2014, 253: 284-294. |
32 | Zastawny M, Mallouppas G, Zhao F, et al. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows[J]. International Journal of Multiphase Flow, 2012, 39: 227-239. |
33 | Hua L N, Zhao H, Li J H, et al. Eulerian-Eulerian simulation of irregular particles in dense gas-solid fluidized beds[J]. Powder Technology, 2015, 284: 299-311. |
34 | Zhou Z Y, Pinson D, Zou R P, et al. Discrete particle simulation of gas fluidization of ellipsoidal particles[J]. Chemical Engineering Science, 2011, 66(23): 6128-6145. |
35 | Liu B Q, Zhang X H, Wang L G, et al. Fluidization of non-spherical particles: sphericity, zingg factor and other fluidization parameters[J]. Particuology, 2008, 2: 74-78. |
36 | Grace J, Sun G. Influence of particle size distribution on the performance of fluidized bed reactors[J]. The Canadian Journal of Chemical Engineering, 1991, 69(5): 1126-1134. |
37 | Chew J W, Wolz J R, Hrenya C M. Axial segregation in bubbling gas-fluidized beds with Gaussian and lognormal distributions of Geldart group B particles[J]. AIChE Journal, 2010, 56(12): 3049-3061. |
38 | Hu C Q, He Y F, Liu D F, et al. Advances in mineral processing technologies related to iron, magnesium, and lithium[J]. Reviews in Chemical Engineering, 2019, 36(1): 107-146. |
39 | Lan B, Xu J, Zhao P, et al. Long-time coarse-grained CFD-DEM simulation of residence time distribution of polydisperse particles in a continuously operated multiple-chamber fluidized bed[J]. Chemical Engineering Science, 2020, 219: 115599. |
40 | Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. |
41 | Zhong W Q, Zhang Y, Jin B S, et al. Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed[J]. Chemical Engineering & Technology, 2009, 32: 386-391. |
42 | Peng L, Xu J, Zhu Q S, et al. GPU-based discrete element simulation on flow regions of flat bottomed cylindrical hopper[J]. Powder Technology, 2016, 304: 218-228. |
43 | Lu G, Third J R, Müller C R. Discrete element models for non-spherical particle systems: from theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465. |
44 | Michaelides E. Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer[M]. Singapore: World Scientific, 2006: 172-175. |
45 | Di Felice R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. |
46 | Beetstra R, van der Hoef M A, Kuipers J A M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501. |
47 | Zhou Q, Wang J W. CFD study of mixing and segregation in CFB risers: extension of EMMS drag model to binary gas-solid flow[J]. Chemical Engineering Science, 2015, 122: 637-651. |
48 | Fitzgerald T, Bushnell D, Crane S, et al. Testing of cold scaled bed modeling for fluidized-bed combustors[J]. Powder Technology, 1984, 35: 107-120. |
49 | Di Felice R, Rapagnà S, Foscolo P U. Dynamic similarity rules: validity check for bubbling and slugging fluidized beds[J]. Powder Technology, 1992, 71(3): 281-287. |
50 | Di Felice R, Rapagnà S, Foscolo P U, et al. Cold modelling studies of fluidised bed reactors[J]. Chemical Engineering Science, 1992, 47(9): 2233-2238. |
51 | Stein M J, Ding Y L, Seville J P K. Experimental verification of the scaling relationships for bubbling gas-fluidised beds using the PEPT technique[J]. Chemical Engineering Science, 2002, 57(17): 3649-3658. |
52 | Song Y, Feng J, Jia Y, et al. Influence of ash agglomerating fluidized bed reactor scale-up on coal gasification characteristics[J]. AIChE Journal, 2014, 60(5): 1821-1829. |
53 | Sanderson P J, Lim K S, Sidorenko I, et al. Hydrodynamic similarity in bubbling fluidized beds: the importance of the solid-to-gas density ratio[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5466-5473. |
54 | Sanderson J, Rhodes M. Bubbling fluidized bed scaling laws: evaluation at large scales[J]. Particle Technology and Fluidization, 2005, 51(10): 2686-2694. |
55 | Ommen J R V, Teuling M, Nijenhuis J, et al. Computational validation of the scaling rules for fluidized beds[J]. Powder Technology, 2006, 163(1/2): 32-40. |
56 | Glicksman L R. Scaling relationship for fluidized beds[J]. Chemical Engineering Science, 1984, 39: 1373-1379. |
57 | Glicksman L R, Hyre M, Woloshun K. Simplified scaling relationships for fluidized beds[J]. Powder Technology, 1993, 77: 177-199. |
58 | Horio M, Nonaka A, Sawa Y, et al. A new similarity rule for fluidized bed scale-up[J]. AIChE Journal, 1986, 32(9): 1466-1482. |
59 | 赵虎. 流化床中不同粒径颗粒停留时间及其分布的调控研究[D]. 北京: 中国科学院大学, 2017. |
Zhao H. Modulating the residence time and distribution of particles with different sizes in fluidized beds[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
60 | Volk W, Johnson C A, Stotler H H. Effect of reactor internals on quality of fluidization[J]. Chemical Engineering Progress, 1962, 58(3): 44-47. |
61 | Murray J A, Benyahia S, Metzger P, et al. Continuum representation of a continuous size distribution of particles engaged in rapid granular flow[J]. Physics of Fluids, 2012, 24: 083303. |
62 | Qin Z Y, Zhou Q, Wang J W. An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers[J]. Chemical Engineering Science, 2019, 207: 358-378. |
63 | Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 1966, 12: 610-612. |
64 | Wang J W, van der Hoef M A, Kuipers J A M. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer[J]. Chemical Engineering Science, 2009, 64(3): 622-625. |
65 | Wang J W, van der Hoef M A, Kuipers J A M. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds[J]. Chemical Engineering Science, 2010, 65(12): 3772-3785. |
66 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
67 | Wang J W, van der Hoef M A, Kuipers J A M. Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5279-5287. |
68 | Glicksman L R, McAndrews G. The effect of bed width on the hydrodynamics of large particle fluidized beds[J]. Powder Technology, 1985, 42: 159-167. |
[1] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[2] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[3] | Jing ZHAO, Bogeng LI, Zhiyang BU, Hong FAN. Research on residence time distribution of the low-viscous polymer fluid in microchannel [J]. CIESC Journal, 2021, 72(8): 4030-4038. |
[4] | HU Dandan, GENG Sulong, ZENG Xi, WANG Fang, YUE Junrong, XU Guangwen. Gas back-mixing characteristics and the effects on gas-solid reaction behavior and activation energy characterization [J]. CIESC Journal, 2021, 72(3): 1354-1363. |
[5] | HUANG Zhengliang, WANG Chao, GUO Yanni, YANG Yao, SUN Jingyuan, WANG Jingdai, YANG Yongrong. Investigation of secondary flow in helical coils based on residence time distribution [J]. CIESC Journal, 2021, 72(2): 921-927. |
[6] | WANG Guanqiu, LIN Guanyi, ZHU Chunying, FU Taotao, MA Youguang. One-dimensional amplification and gas-liquid mass transfer characteristics of microchannel reactor [J]. CIESC Journal, 2021, 72(2): 937-944. |
[7] | Chuanfu DENG,Wei WANG,Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU. Recent progress in scale-up integration of microfluidic droplet generators [J]. CIESC Journal, 2021, 72(12): 5965-5974. |
[8] | Peng TIAN,Dewu WANG,Ruojin WANG,Meng TANG,Xiaolei HAO,Shaofeng ZHANG. Gas-solid flow characteristics in the rolling fluidized-bed [J]. CIESC Journal, 2021, 72(10): 5102-5113. |
[9] | Fengguo TIAN, Tian ZHU, Dezheng KONG, Ming LEI. Residence time of large particles in fluidized beds with non-uniform gas introducing [J]. CIESC Journal, 2020, 71(4): 1520-1527. |
[10] | Lei YAN, Siyu CHEN, Meiliangzi XIAO, Wei DING. Synthesis of long chain alkyl xylene from coal to olefin [J]. CIESC Journal, 2019, 70(S1): 235-241. |
[11] | Junjie LIN, Kun LUO, Shuai WANG, Chenshu HU, Jianren FAN. Verification of coarse-grained CFD-DEM method in multiple flow regimes [J]. CIESC Journal, 2019, 70(5): 1702-1712. |
[12] | ZHU Chuangjie, YUE Zhi, HUANG Zibin, CHENG Zhenmin, YANG Tao, CHEN Bo, GE Hailong, FANG Xiangchen. Effects of solid holdup on bubble behavior in ebullated-bed reactor [J]. CIESC Journal, 2018, 69(11): 4763-4769. |
[13] | YAO Dong, LIU Mingyan, LI Xiangnan. Residence time distributions of liquid phase in gas-liquid-solid mini-fluidized bed [J]. CIESC Journal, 2018, 69(11): 4754-4762. |
[14] | ZHOU Hongjia, LIU Fei, ZHOU Ming, ZHONG Zhaoxiang, XING Weihong. Dual-membrane assisted heterogeneous Fenton for pulp wastewater treatment [J]. CIESC Journal, 2018, 69(1): 490-498. |
[15] | HUANG Zibin, ZHU Chuangjie, HUANG Yan, CHENG Zhenmin, YANG Tao, LIU Jiankun, FANG Xiangchen. Backmixing characterization of liquid phase in ebullated bed reactor [J]. CIESC Journal, 2017, 68(2): 630-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||